Abstract:
A laser source includes an optical resonator including first and second reflectors having first and second reflection spectral bands. A gain medium is disposed in the optical resonator. The gain medium has a gain spectrum. Center wavelengths of at least two of: the first reflection spectral band; the second reflection spectral band; or the gain spectrum are offset relative to each other for reduction of a spectral variance of the laser source. For example, the first and the second reflection spectral bands may be offset relative to one another to form an overlap area above a lasing threshold. The lasing is limited to the overlap area. When the overlap area accommodates a single lasing mode, the output emission of the laser source is monochromatic.
Abstract:
A CO2 laser that generates laser-radiation in just one emission band of a CO2 gas-mixture has resonator mirrors that form an unstable resonator and at least one spectrally-selective element located on the optical axis of the resonator. The spectrally-selective element may be in the form of one or more protruding or recessed surfaces. Spectral-selectivity is enhanced by forming a stable resonator along the optical axis that includes the spectrally-selective element. The CO2 laser is tunable between emission bands by translating the spectrally-selective element along the optical axis.
Abstract:
A resonator for a laser includes a first resonator wall and a second resonator wall with a lasing medium disposed in a gap therebetween. The resonator further includes a first mirror disposed at a first end of the first and second resonator walls and a second mirror disposed at a second end of the first and second resonator walls. The mirrors cooperate to form an intra-cavity laser beam that travels along a plurality of paths through the lasing medium. Furthermore, the first mirror and the second mirror form a laser resonator for a parasitic laser mode. A parasitic mode suppressor is located within the superfluous region.
Abstract:
A laser including a solid state laser gain medium having a D-shaped cross section and an unstable resonator laser cavity including the solid state laser gain medium configured with a geometric magnification in a range of 1 to 5 under the intended operating conditions, including the effects of thermal lensing in the gain medium. An optical switching device in the unstable resonator laser cavity generates a pulse duration in the range of 0.05 to 100 nanoseconds. A diode-pump source is configured to inject pump light through the curved or barrel surface of the D-shaped gain medium.
Abstract:
An optically end-pumped amplifier with a plate-shaped optical gain medium has a plurality of pump laser units for optically pumping the gain medium through at least one of the narrow side surfaces thereof. The pump laser units are designed such that the pump laser radiation, upon passing through the gain medium, has an elongated beam cross section having a short axis and a long axis running parallel to the main surfaces of the gain medium and propagates freely through the gain medium with respect to the short axis. They are arranged such that in each case the principal axes of the beam bundles of the pump laser units impinge on one of the pumped side surfaces in a plane perpendicular to the short axis at an angle to one another, wherein the beam cross sections of the beam bundles are superimposed on one another.
Abstract:
A laser may comprise a ceramic body defining a chamber therein containing a laser gas. The ceramic body may include a plurality of parallel walls that partially define a first section of the chamber, the first section of the chamber defining a waveguide. The ceramic body may further include a plurality of oblique walls that partially define a second section of the chamber, the second section of the chamber being shaped to modify a transverse profile of a laser beam traveling through the second section of the chamber. The laser may further comprise a plurality of electrodes positioned outside the ceramic body and adjacent to the plurality of parallel walls such that only laser gas within the first section of the chamber is excited when an excitation signal is applied to the plurality of electrodes.
Abstract:
Apparatus and method for designing and operating a solid-state laser that compensates for thermal lensing such that lasing instability is maintained at high pumping power. In some embodiments, the laser is an optically pumped semiconductor laser (OPSL). In some embodiments, a concave end facet is formed on the OPSL that at least compensates for thermal lensing at high pump power. In some embodiments, an external mirror is used for at least one end of the OPSL, wherein the external mirror at least compensates for thermal lensing at high pump power.
Abstract:
A gas laser includes an unstable laser resonator disposed in a laser housing, and a beam guide configured to guide a laser beam decoupled from the laser resonator out of the laser housing. The laser beam is coupled into the beam guide, and the beam guide is an optical fiber that extends out of the laser housing and guides the beam from the housing.
Abstract:
A unidirectional ring laser oscillator has a travelling wave unstable mode in one transverse dimension and either a waveguide or freespace Gaussian mode in the orthogonal transverse dimension for coupling to large volumes of asymmetric cross section laser gain media. This device concept is shown to have unique and innovative features such as an exchange of left for right in the intracavity radiation profile without having to employ concave optics. Also, a high insensitivity to misalignment of one of the intracavity ring optics is achieved without having to suffer any deleterious effects associated with the high intensity of radiation normally encountered at an intracavity focal plane. Unidirectional operation of the laser is achieved using both intracavity and extracavity optical techniques.
Abstract:
Slab lasers and method for producing high power coherent laser radiation of good quality. In one embodiment, a slab laser comprises a slab laser medium, an energy source configured to deliver energy to the laser medium, and first and second optical elements. The first optical element has a first reflective surface at a first boundary of the laser medium, and the second optical element has a second reflective surface at a second boundary of the laser medium. The first and second reflective surfaces face each other across the length of the laser medium, and at least one of the first and second optical elements includes a plurality of reflective regions configured to modify the phase distribution of the incident laser radiation propagating from the reflective regions. The first and second reflective surfaces are also positioned at an angle relative to each other to form a laser resonator.