摘要:
A sensor for measuring a density of a fluid is provided. The sensor (200) includes a flow tube (104) for receiving the fluid and a vibration driver (102) coupled to the flow tube, the vibration driver configured to drive the flow tube to vibrate. The sensor also includes a vibration detector (106) coupled to the flow tube, the vibration detector detecting characteristics related to the vibrating flow tube, and a distributed temperature sensor (202) coupled to the flow tube, the distributed temperature sensor measuring a temperature of the flow tube as the flow tube vibrates. The sensor further includes measurement circuitry (110) coupled to the vibration detector and the distributed temperature sensor, the measurement circuitry determining a density of the fluid from the detected characteristics related to the vibrating flow tube and the measured temperature of the flow tube.
摘要:
An instrument for determining fluid properties is provided. The instrument (300) includes a tube (304) receiving the fluid, a single magnet (302) attached to the tube, and a single coil (306) wound around the single magnet. The single coil is coupled to a pulse current source (312) and receives a pulse current that creates a magnetic field in the single coil, the created magnetic field interacting with the single magnet to drive the tube to vibrate. The instrument further includes a detector (306) coupled to the tube, wherein the detector is coupled to measurement circuitry (310) and detects properties of the tube as it vibrates, and the measurement circuitry determines the fluid properties based on the detected properties. The instrument also includes a housing (314) enclosing the tube, the single magnet, and the single coil wound around the single magnet.
摘要:
Determining an electrical property of a formation fluid. At least some of the illustrative embodiments are methods comprising drawing formation fluids into a tool within a borehole, applying a swept frequency electric field to the formation fluids by way of a first winding, inducing a current flow in a second winding based on the swept frequency electric field, and determining a property of the formation fluids based, at least in part, on the current flow in the second winding.
摘要:
Determining an electrical property of a formation fluid. At least some of the illustrative embodiments are methods comprising drawing formation fluids into a tool within a borehole, applying a swept frequency electric field to the formation fluids by way of a first winding, inducing a current flow in a second winding based on the swept frequency electric field, and determining a property of the formation fluids based, at least in part, on the current flow in the second winding.
摘要:
In some embodiments, an apparatus and a system, as well as a method and an article, may operate to receive a vibration signal having a frequency and a characteristic (e.g., voltage) proportional to the vibration amplitude of a tube in a vibrating tube density sensor. Further activity may include transmitting the density of a fluid flowing through the tube based on the frequency and an elastic modulus of the tube determined by the value of the characteristic. Additional apparatus, systems, and methods are described.
摘要:
In some embodiments, an apparatus and a system, as well as a method and an article, may operate to receive a vibration signal having a frequency and a characteristic (e.g., voltage) proportional to the vibration amplitude of a tube in a vibrating tube density sensor. Further activity may include transmitting the density of a fluid flowing through the tube based on the frequency and an elastic modulus of the tube determined by the value of the characteristic. Additional apparatus, systems, and methods are described.
摘要:
Various embodiments include apparatus and methods of determining the viscosity of a fluid downhole in a well. A parameter of a response signal, obtained from driving a tube containing a fluid with an excitation signal for vibrating the tube, can be collected while maintaining the tube in a vibrating mode. The parameter can be evaluated to measure the viscosity of the fluid. In various embodiments, the fluid viscosity may be measured in-situ downhole in the well.
摘要:
A pumping system comprising: a probe to suction a fluid from a fluid reservoir; a pump in fluid communication with said probe; a sensor for detecting phase changes in said pumping system, said sensor in fluid communication with said probe or pump, said sensor generating a sensor signal; a fluid exit from said pumping system, said fluid exit being in fluid communication with said pump; and a variable force check valve located between said probe and said fluid exit.
摘要:
For some embodiments, a system includes a moveable structure, moveable in at least a linear direction relative to a supporting structure, a magnetic field sensor assembly including a magnetic field sensor, and a magnet, wherein one of the magnet and the magnetic field sensor is coupled to the moveable structure, and wherein the other of the magnet and the magnetic field sensor assembly is coupled to the supporting structure, and wherein the magnetic field sensor assembly is configured to determine the relative position of the magnet to the magnetic field sensor.
摘要:
Improved systematic inversion methodology applied to formation testing data interpretation with spherical, radial and/or cylindrical flow models is disclosed. A method of determining a parameter of a formation of interest at a desired location comprises directing a formation tester to the desired location in the formation of interest and obtaining data from the desired location in the formation of interest. The obtained data relates to a first parameter at the desired location of the formation of interest. The obtained data is regressed to determine a second parameter at the desired location of the formation of interest. Regressing the obtained data comprises using a method selected from a group consisting of a deterministic approach, a probabilistic approach, and an evolutionary approach.