Abstract:
Dual or multi-modulation display systems comprising a first modulator and a second modulator are disclosed. The first modulator may comprise a plurality of analog mirrors (e.g. MEMS array) and the second modulator may comprise a plurality of mirrors (e.g., DMD array). The display system may further comprise a controller that sends control signals to the first and second modulator. The display system may render highlight features within a projected image by affecting a time multiplexing scheme. In one embodiment, the first modulator may be switched on a sub-frame basis such that a desired proportion of the available light may be focused or directed onto the second modulator to form the highlight feature on a sub-frame rendering basis.
Abstract:
Dual or multi-modulation display system are disclosed that comprise projector systems with at least one modulator that may employ non-mechanical beam steering modulation. Many embodiments disclosed herein employ a non-mechanical beam steering and/or polarizer to provide for a highlights modulator.
Abstract:
Shaped glasses have curved surface lenses with spectrally complementary filters disposed thereon. The filters curved surface lenses are configured to compensate for wavelength shifts occurring due to viewing angles and other sources. Complementary images are projected for viewing through projection filters having passbands that pre-shift to compensate for subsequent wavelength shifts. At least one filter may have more than 3 primary passbands. For example, two filters include a first filter having passbands of low blue, high blue, low green, high green, and red, and a second filter having passbands of blue, green, and red. The additional passbands may be utilized to more closely match a color space and white point of a projector in which the filters are used. The shaped glasses and projection filters together may be utilized as a system for projecting and viewing 3D images.
Abstract:
Shaped glasses have curved surface lenses and spectrally complementary filters disposed on the curved surface lenses configured to compensate for wavelength shifts occurring due to viewing angles and other sources. The spectrally complementary filters include guard bands to prevent crosstalk between spectrally complementary portions of a 3D image viewed through the shaped glasses. In one embodiment, the spectrally complementary filters are disposed on the curved lenses with increasing layer thickness towards edges of the lenses. The projected complementary images may also be pre-shifted to compensate for subsequent wavelength shifts occurring while viewing the images.
Abstract:
Dual or multi-modulation display systems comprising a first modulator and a second modulator are disclosed. The first modulator may comprise a plurality of analog mirrors (e.g. MEMS array) and the second modulator may comprise a plurality of mirrors (e.g., DMD array). The display system may further comprise a controller that sends control signals to the first and second modulator. The display system may render highlight features within a projected image by affecting a time multiplexing scheme. In one embodiment, the first modulator may be switched on a sub-frame basis such that a desired proportion of the available light may be focused or directed onto the second modulator to form the highlight feature on a sub-frame rendering basis.
Abstract:
Shaped glasses have curved surface lenses with spectrally complementary filters disposed thereon. The filters curved surface lenses are configured to compensate for wavelength shifts occurring due to viewing angles and other sources. Complementary images are projected for viewing through projection filters having passbands that pre-shift to compensate for subsequent wavelength shifts. At least one filter may have more than 3 primary passbands. For example, two filters include a first filter having passbands of low blue, high blue, low green, high green, and red, and a second filter having passbands of blue, green, and red. The additional passbands may be utilized to more closely match a color space and white point of a projector in which the filters are used. The shaped glasses and projection filters together may be utilized as a system for projecting and viewing 3D images.
Abstract:
A dual-modulation laser projection system (100) includes a polarizing beamsplitter (110) for splitting laser light (180) into first (182) and second (184) polarized beams having mutually orthogonal polarizations, a phase spatial light modulator (120) for beam steering the second polarized beam (184), a mechanical amplitude spatial light modulator (130) for amplitude modulating a combination of the first polarized beam (182) and the second polarized beam (186) as beam steered by the phase spatial light modulator (120), and a filter (140) for removing, from the combination (190) of the first and second polarized beams, one or more of a plurality of diffraction orders introduced by the mechanical amplitude spatial light modulator (130), to generate filtered, modulated output light (192).
Abstract:
A projection system and calibration method therefor relate to a light source configured to emit a light in response to an image data, an illumination optical system configured to steer the light, the illumination optical system including a first mirror and a second mirror, a digital micromirror device (DMD) including a plurality of micromirrors respectively configured to reflect the steered light to a filter as on-state light or to reflect the steered light as off-state light to a light dump; determining a deviation between an actual angle of orientation and an expected angle of orientation of the DMD; calculating a first amount of angle adjustment corresponding to the first mirror and a second amount of angle adjustment corresponding to the second mirror; and actuating the first mirror according to the first amount and the second mirror according to the second amount.
Abstract:
A novel high efficiency image projection system includes a beam-steering modulator, an amplitude modulator, and a controller. In a particular embodiment the controller generates beam-steering drive values from image data and uses the beam-steering drive values to drive the beam-steering modulator. Additionally, the controller utilizes the beam-steering drive values to generate a lightfield simulation of a lightfield projected onto the amplitude modulator by the beam-steering modulator. The controller utilizes the lightfield simulation to generate amplitude drive values for driving the amplitude modulator in order to project a high quality version of the image described by the image data.
Abstract:
One or more perforation hole pattern methods are applied (402) to generate a spatial distribution of perforation holes forming a semi-random pattern for an image display screen. The image display screen is perforated (404) with the spatial distribution of perforation holes forming the semi-random pattern. Image rendering light is emitted (406) with a light projector toward the image display screen that is installed in an image rendering environment. At least a portion of the image rendering light emitted from the light projector is reflected (408) by the image display screen, toward a viewer.