Abstract:
There is provided a bio-chip including a first substrate including a plurality of micro-pillars protruded from one surface thereof to a predetermined height and having a biomaterial adhered to protruded surfaces of the plurality of micro-pillars, wherein the first substrate is formed of a resin composition including 100 parts by weight of polystyrene and 5 to 30 parts by weight of maleic anhydride.
Abstract:
A user interface device includes a frame replacement unit configured to replace a frame of an input image signal by a pattern frame at a frame time; a projector module configured to project an image of the image signal with the pattern frame onto a target; an image acquisition unit configured to capture a pattern image of the pattern frame from the image projected onto the target; and an image recognition unit configured to recognize a user interaction by using the captured pattern image.
Abstract:
A user interaction apparatus using a pattern image includes: an image output unit for outputting a general image on a display region; a laser radiating unit for radiating laser beams for a pattern image; a pattern image forming unit for forming the pattern image by using the laser beams; a pattern image output unit for outputting the pattern image by overlapping the same on the display region of the general image; and an image acquiring unit for capturing the pattern image output on the display region. The apparatus further includes: an image recognizing unit for recognizing a user input by performing an image processing on the pattern image captured by the image acquiring unit.
Abstract:
Disclosed is a device for measuring the concentration of the particles contained in a fluid. The device comprises a control volume body having a predetermined effective volume. An inlet path is formed at an end of the control volume body to feed the fluid into the control volume body therethrough. An outlet path is formed at another end of the control volume body to discharge the fluid from the control volume body therethrough. Measuring instruments are provided at the inlet path and the outlet path to emit electrical signals when the fine particles pass through the inlet path and the outlet path. A computing machine receives the electrical signals transmitted from the measuring instruments, and then computes the number and the concentration of fine particles contained in the control volume body. The device is easily integrated with Micro-TAS (Total analysis System).