Abstract:
A fine fast Fourier transform window position recovering apparatus of an OFDM system receiver for recovering the phase error of an FFT window by using the number of zero-crossings of the phase variation value calculated between transmitted and received complex values is provided. The fine FFT window position recovering apparatus includes: an analog to digital converter, a symbol start detector, an FFT means, a phase calculator, a zero-crossing counter and an FFT window controller. The apparatus makes it possible to guarantee the reliability of a system by adjusting the phase error of the FFT window by using the number of zero-crossings of the phase variation calculated between the transmitted and received complex values and the number of the zero-crossings of the amplitude of the real part or the imaginary part of the received complex value.
Abstract:
A window cleaning robot according to the present embodiment comprises a first cleaning unit and a second cleaning unit, which are respectively attached to and move on both surfaces of a window by magnetic force. The window cleaning robot further comprises: a first magnetic module included in the first cleaning unit; a second magnetic module included in the second cleaning unit; a magnetic force sensing part for sensing magnetic force between the first magnetic module and the second magnetic module; and a magnetic force controller for controlling the magnetic force between the first magnetic module and the second magnetic module, wherein the first magnetic module comprises a first magnet which is rotationally mounted, and a second magnet and a third magnet disposed on both sides of the first magnet, and the magnetic force controller rotates the first magnet so as to control the magnetic force between the first magnetic module and the second magnetic module.
Abstract:
A window cleaning robot according to the present embodiment comprises a first cleaning unit and a second cleaning unit, which are respectively attached to and move on both surfaces of a window by magnetic force. The window cleaning robot further comprises: a first magnetic module included in the first cleaning unit; a second magnetic module included in the second cleaning unit; a magnetic force sensing part for sensing magnetic force between the first magnetic module and the second magnetic module; and a magnetic force controller for controlling the magnetic force between the first magnetic module and the second magnetic module, wherein the first magnetic module comprises a first magnet which is rotationally mounted, and a second magnet and a third magnet disposed on both sides of the first magnet, and the magnetic force controller rotates the first magnet so as to control the magnetic force between the first magnetic module and the second magnetic module.
Abstract:
A liquid crystal display (LCD) which can provide uniform vertical and horizontal visibility while improving lateral visibility is provided. The LCD includes a first insulating substrate, first and second gate lines which are formed on the first insulating substrate, and a data line which is insulated from the first and second gate lines and intersects the first and second gate lines. The LCD also includes first and second thin film transistors (TFTs) which are formed in each pixel and are connected to the first and second gate lines, respectively, and to the data line, first sub-pixel electrodes which are connected to the first TFT, and a second sub-pixel electrode which is separated from the first sub-pixel electrodes by predetermined gaps and is connected to the second TFT. The LCD includes a second insulating substrate which faces the first insulating substrate, a common electrode which is formed on the second insulating substrate and comprises a plurality of domain dividers, and a liquid crystal layer which is interposed between the first and second insulating substrates, wherein a display region of the second sub-pixel electrode is divided into 4 domain groups by the domain dividers, and the 4 domain groups have substantially the same area.
Abstract:
An apparatus for detecting a guard interval length (type) of a transmission symbol among the structure of an orthogonal frequency division multiplexing (OFDM) system receiver, to ensure proper operation of a symbol start detector and a fast Fourier transform (FFT) window position controller, is provided. This apparatus includes an analog-to-digital converter (ADC) for converting a received OFDM signal into digital complex samples, a symbol start position detector for detecting a symbol start position with reference to information on a guard interval length among the complex samples output by the ADC, a symbol start position difference detector for detecting the difference between the symbol start position detected by the symbol start position detector and a symbol start position delayed for a predetermined symbol time, a guard interval length detector for comparing the symbol start position difference detected by the symbol start position difference detector with a predetermined guard interval decision reference value and detecting the length of the guard interval, and an FFT window position controller for shifting the FFT window position using the guard interval length detected by the guard interval length detector and the symbol start information detected by the symbol start detector, to activate an FFT at the shifted FFT window position. The lengths of various guard intervals are automatically detected in the OFDM receiver, thus performing accurate FFT window recovery.
Abstract:
A received signal is converted into a digital signal through an A/D converter and then converted into the polar coordinate system. A synchronizer removes a frequency offset from the digital signal, the digital signal is again converted into an orthogonal coordinate system and a fast fourier transform is performed with a FFT. The digital signal is again converted into the polar coordinate system. An equalizer and a phase compensator compensate respectively a channel distortion and a phase error to the digital signal. Thus, the OFDM receiver using polar coordinate system and method thereof of the present invention can reduce the number of adders and multipliers required in a frequency synchronization, a compensation for channel influence, and a removal of remaining phase error by processing the signal in the polar coordinate system, thereby simplifying the calculation process and the receiver.
Abstract:
An image forming apparatus and an auto color registration method of the same which prints a color image by single pass, the image forming apparatus including: a plurality of developing units which each develops a color image in a predetermined color; a transfer unit which transfers the color image developed by developing units to the print medium and include a transfer belt rotatably installed on a transfer path; a first detector provided in a predetermined location of the transfer belt to face the transfer belt and detects any defect from a surface of the transfer belt; a second detector provided in a predetermined location of the transfer belt to face the transfer belt and detects a test pattern of an auto color registration (ACR) error transferred to the transfer belt; and a controller which adjusts the ACR error based on data detected by the first detector and the second detector.
Abstract:
A liquid crystal display (LCD) which can provide uniform vertical and horizontal visibility while improving lateral visibility is provided. The LCD includes a first insulating substrate, first and second gate lines which are formed on the first insulating substrate, and a data line which is insulated from the first and second gate lines and intersects the first and second gate lines. The LCD also includes first and second thin film transistors (TFTs) which are formed in each pixel and are connected to the first and second gate lines, respectively, and to the data line, first sub-pixel electrodes which are connected to the first TFT, and a second sub-pixel electrode which is separated from the first sub-pixel electrodes by predetermined gaps and is connected to the second TFT. The LCD includes a second insulating substrate which faces the first insulating substrate, a common electrode which is formed on the second insulating substrate and comprises a plurality of domain dividers, and a liquid crystal layer which is interposed between the first and second insulating substrates, wherein a display region of the second sub-pixel electrode is divided into 4 domain groups by the domain dividers, and the 4 domain groups have substantially the same area.
Abstract:
An OFDM receiver for interlocking FFT window position recovery with sampling clock control, and a method thereof are provided. This method includes the steps of: extracting a pilot signal from fast-Fourier-transformed OFDM received signals, and detecting inter-pilot phase differences; averaging the detected phase differences for a symbol and normalizing the mean phase difference by dividing it into reference values corresponding to phase differences generated when FFT window errors of at least one sample exist; and simultaneously controlling the FFT window position offset using a value obtained by rounding off the normalized value, and the sampling clock offset using the difference between the round-off value and the normalized value.