Abstract:
An engine system for a machine is disclosed. The engine system may have a first intake manifold configured to distribute air into a first cylinder bank of an engine. The engine system may also have a second intake manifold configured to distribute air into a second cylinder bank of the engine. The engine system may have a first exhaust manifold configured to discharge exhaust from the first cylinder bank to the atmosphere. The engine system may further have a second exhaust manifold configured to discharge exhaust from non-donor cylinders in the second cylinder bank to the atmosphere. In addition, the engine system may have a third exhaust manifold separate from the first and second exhaust manifolds and configured to recirculate exhaust from donor cylinders in the second cylinder bank to the first and second intake manifolds.
Abstract:
The exhaust gas recirculation system includes a plurality of coolers arranged in a predefined configuration that are configured to receive a flow of exhaust gas and a flow of coolant therethrough. The exhaust gas recirculation system further includes plurality of valves associated with each of the plurality of coolers. The plurality of valves is configured to regulate at least one of the flows of exhaust gas and the coolant through the corresponding cooler. The exhaust gas recirculation system also includes a control unit configured to selectively switch opening and closing of the plurality of valves such that at least one of the flow of exhaust gas and the flow of coolant through at least one cooler of the plurality of coolers is regulated during an operation of the exhaust gas recirculation system, to actively regenerate the at least one cooler.
Abstract:
An exhaust system is disclosed for use with an engine. The exhaust system may have an exhaust duct, an aftertreatment component disposed within the exhaust duct, and a resistive grid disposed within the exhaust duct at a location upstream of the aftertreatment component. The exhaust system may further have a controller configured to determine a need to heat the aftertreatment component to a threshold temperature, determine a load increase that should be placed on the engine to raise a temperature of exhaust exiting the engine when the aftertreatment component needs to be heated, and determine an amount of electrical power that should be applied to the resistive grid to raise the temperature of the exhaust. The controller may also be configured to selectively implement a combination of engine load increase and application of electrical power to the resistive grid to raise the temperature of exhaust to the threshold temperature.
Abstract:
An exhaust system is disclosed for use with an engine. The exhaust system may have a compression relief valve associated with an engine cylinder. The exhaust system may also have an exhaust gas recirculation passage extending from the compression relief valve to an intake of the engine cylinder.
Abstract:
A piston for reduced production of particulate matter during combustion of a fuel directly injected after a top dead center position includes a piston body defining a piston body diameter of about 263 mm, and a combustion face upon the first axial body end. The combustion face includes a combustion bowl, and an annular piston rim extending circumferentially around the combustion bowl. Inner and outer rim surfaces together comprise a horizontal width of the rim in a ratio of about 1:1 to about 2:1. The inner rim surface includes a chamfer sloping from about 9° to about 11°, such that a profile of the rim is relieved to limit deflection by the piston of the directly injected fuel toward a cylinder wall.