Abstract:
Provided are a human body communication device and an operating method of the same. The human body communication device according to an embodiment of the inventive concept includes a first electrode, a second electrode, a transmitting circuit, a receiving circuit, a ground electrode, and a switch. The transmitting circuit generates a first signal in a transmitting mode and transmits the first signal to the first electrode. The receiving circuit receives a second signal from the first electrode in the receiving mode. The receiving circuit includes a differential amplifier that amplifies a difference between a voltage level of a first input terminal depending on the second signal and a voltage level of a second input terminal. The switch electrically connects the second electrode and the ground electrode in the transmitting mode, and electrically connects the second electrode and the second input terminal in the receiving mode.
Abstract:
The human body sensing device includes a contact sensing unit that includes a sensing electrode and a signal electrode, an activation module that senses a contact with a body through the sensing electrode when the sensing electrode and the signal electrode contact the body and outputs a wake-up signal in response to the sensing of the contact, and a human body communication unit that provides a ground voltage to the signal electrode and outputs a data signal to the signal electrode when the wake-up signal from the activation module is received.
Abstract:
Provided is a receiver. The receiver according to the inventive concept includes a first filter circuit, a second filter circuit, and an amplifier. The first filter circuit provides a first path for first frequency components below first cutoff frequency of input frequency components and passes second frequency components except for the first frequency components of the input frequency components through second path. The second filter circuit attenuates third frequency components below a second cutoff frequency of the second frequency components. The amplifier amplifies the second frequency components including the attenuated third frequency components.
Abstract:
Provided is an artificial intelligence system. The system includes a first sensor configured to generate a first sensing signal during a sensing time, a second sensor disposed adjacent to the first sensor and configured to generate a second sensing signal during the sensing time, a pre-processing unit configured to select valid data according to a magnitude of a differential signal generated based on a difference between the first sensing signal and the second sensing signal, and an artificial intelligence module configured to analyze the valid data to generate result data.
Abstract:
Provided is a capsule endoscope. The capsule endoscope includes: an imaging device configured to perform imaging on a digestive tract in vivo to generate an image; an artificial neural network configured to determine whether there is a lesion area in the image; and a transmitter configured to transmit the image based on a determination result of the artificial neural network.
Abstract:
Disclosed are an electric power conversion apparatus and method in an energy harvesting system. In more detail, it is possible to obtain the maximum electric power from the plurality of energy sources by selecting the connection structure between the source terminals or the connection structure between the source terminals and the collection terminals using the electrical characteristic values (for example, open voltage, short current, and internal impedance) of each source and adjusting the load impedance in the selected connection structure in the energy harvesting system.
Abstract:
Disclosed is an operating method of a user communication device, which includes receiving a wakeup signal from a stationary communication device over a first human body communication channel, the wakeup signal having a frequency in a low frequency band, switching from a standby mode to a wakeup mode in response to the wakeup signal, and receiving a data signal from the stationary communication device over the first human body communication channel during the wakeup mode, and the first human body communication channel is provided by a body of a user of the user communication device.
Abstract:
Provided is a capsule endoscope. The capsule endoscope includes: an imaging device configured to perform imaging on a digestive tract in vivo to generate an image; an artificial neural network configured to determine whether there is a lesion area in the image; and a transmitter configured to transmit the image based on a determination result of the artificial neural network.
Abstract:
Provided is a spike neural network circuit including a synapse configured to generate an operation signal based on an input spike signal and a weight, and a neuron configured to generate an output spike signal using a comparator configured to compare a voltage of a membrane signal generated based on the operation signal with a voltage of a threshold signal, wherein the comparator includes a bias circuit configured to conditionally supply a bias current of the comparator depending on the membrane signal.
Abstract:
The inventive concept includes an oscillating circuit, a phase inverting circuit, and a phase detecting circuit. The oscillating circuit generates a first clock to be used to sample an input signal. The phase inverting circuit outputs a second clock based on the first clock. The phase detecting circuit generates a control signal having a first logic value when a phase difference between a phase of the input signal and a phase of the second clock is less than a reference value for a reference time or more. The phase detecting circuit generates the control signal having a second logic value when the phase difference is equal to or greater than the reference value or when the phase difference is less than the reference value for a time shorter than the reference time. The phase inverting circuit inverts the phase of the second clock when a logic value of the control signal changes from the first logic value to the second logic value or when a logic value of the control signal changes from the second logic value to the first logic value.