Abstract:
Provided is a method for manufacturing a sulfide-based solid electrolyte including preparing a precursor comprising lithium sulfide, germanium sulfide, aluminum sulfide, phosphorus sulfide, and sulfur, conducting a mixing process of the precursor to prepare a mixture, and crystallizing the mixture to form a compound represented by Li9.7Al0.3Ge0.7P2S12. The sulfide-based solid electrolyte may have high ionic conductivity.
Abstract:
A lithium battery binder composition in accordance with some example embodiments of the inventive concept may include a lithium ion polymer, an inorganic particle and an organic solution in which a lithium salt is dissolved. The lithium ion polymer may be a cellulosic polymer having sulfonic acid lithium salt or carboxylic acid lithium salt functional group. The lithium ion polymer may be manufactured by substituting hydroxyl group or carboxylic group of cellulosic polymer. The lithium battery binder composition may be used to at least one of an electrolyte, a cathode layer and an anode layer.
Abstract:
Provided are a solid polymeric electrolyte and a lithium battery with the same. The electrolyte paste may be formed by controlling composition ratio, dispersion, and thickness of the electrolyte paste to have physical properties suitable for the printing process. The use of the printing process enables to simplify a process of fabricating the lithium battery. In addition, the lithium battery provided with the solid polymeric electrolyte can exhibit improved performance (for example, in electrode-electrolyte interface stability and an internal short property), regardless of the shape of the solid polymeric electrolyte. For example, the lithium battery may exhibit improvement in interface stability between the electrode and the electrolyte and be configured to suppress an internal short therein.