Abstract:
A method of preparing an oxide-based solid electrolyte includes preparing a precursor solution which includes a lanthanide complex and a metal complex; preparing an intermediate by a hydrothermal reaction that is performed on the precursor solution; adding a lithium compound and a dopant precursor to the intermediate to prepare a mixture; and crystallizing the mixture. The mixture is crystallized by preparing a first oxide-based solid electrolyte by performing a first crystallization process on the mixture; and preparing a second oxide-based solid electrolyte by performing a second crystallization process on the first oxide-based solid electrolyte, wherein the second oxide-based solid electrolyte has a stoichiometric composition that is the same as that of the first oxide-based solid electrolyte, but that has a different crystal structure.
Abstract:
Provided is a method of manufacturing a lithium battery. The method of manufacturing the lithium battery includes providing a anode part including a anode collector, a anode layer, and a anode electrolyte layer which are successively stacked on a first pouch film, providing a cathode part including a cathode collector, a cathode layer, and a cathode electrolyte layer which are successively stacked on a second pouch film, and sealing the first and second pouch films to couple the anode part to the cathode part.
Abstract:
Provided is a method of preparing a coating composition for a separator of a secondary battery, and particularly a method including dispersing a first monomer and a surfactant in a solvent to form micelles, adding a first initiator to the solvent and performing first polymerization reaction to form a precursor solution including an emulsion-type binder, and adding a second monomer and a second initiator to the precursor solution and performing second polymerization reaction to form an aqueous binder solution including a solution-type binder, wherein the emulsion-type binder has a core shape, the solution-type binder has a shell shape wrapping the emulsion-type binder, and the emulsion-type binder and the solution-type binder are chemically bonded.
Abstract:
Provided is a secondary battery including: a first electrode structure; a second electrode structure spaced apart from the first electrode structure; a separator between the first electrode structure and the second electrode structure; and an electrolyte filled between the first electrode structure and the separator and between the second electrode structure and the separator, wherein the separator includes: a separator substrate; a polymer layer adsorbed on a surface of the separator substrate; and a ceramic layer on the polymer layer, the polymer layer including a polyethyloxazoline-based polymer, and the ceramic layer including an aqueous binder.
Abstract:
A lithium battery according to the inventive concept may comprise a cathode, an anode separated from the cathode, a first separator disposed between the cathode and the anode, the first separator having first pores, a second separator disposed on the first separator, the second separator having second pores, and an electrolyte filling a gap between the cathode and the anode. Diameters of the second pores may be smaller than those of the first pores. A standard deviation of the diameters of the second pores is smaller than that of the first pores.
Abstract:
A method of preparing a lithium battery according to an embodiment of the present invention may include preparing a mixture including lithium phosphorus sulfide and metal sulfide, preparing an electrode composite by applying a physical pressure to the mixture, wherein the electrode composite includes lithium phosphorus sulfide, lithium metal sulfide, and amorphous sulfide, preparing an electrode active layer by using the electrode composite, forming an electrode current collector on one side of the electrode active layer, and forming an electrolyte layer on another side of the electrode active layer.
Abstract:
Provided is a power supply device for supplying power to load elements. The power supply device includes a main power module including a main battery, a main power controller configured to control charging and discharging of the main power module, a sub-power module including sub-batteries respectively corresponding to the load elements, and a sub-power controller configured to control charging and discharging of the sub-power module, Based on a remaining capacity of the main battery and a remaining capacity of the sub-batteries, the power supply device is selectively operated in a first mode in which charging and discharging are possible for both the main power module and the sub-power module, a second mode in which charging and discharging are possible only for the sub-power module, or a third mode in which charging and discharging are possible only for the main power module.
Abstract:
Provided is a lithium battery including a first pouch film, a first anode part on the first pouch film, a second cathode part on the first anode part, a polymer insulating film on the second cathode part, the polymer insulating film including a disk which is configured to penetrate the polymer insulating film, a second anode part on the polymer insulating film, a first cathode part on the second anode part, and a second pouch film on the first cathode part. Herein, the second cathode part is electrically connected to the second anode part through the disk.
Abstract:
A method for manufacturing a solid electrolyte includes dissolving first polymers and second polymers in a cosolvent including a first cosolvent and a second cosolvent to provide a preparation solution; adding a lithium solution to the preparation solution to provide a mixture solution; removing the second cosolvent from the mixture solution to prepare an electrolyte paste that exhibits thixotropy; and coating the electrolyte paste onto a substrate to form an electrolyte film, wherein the electrolyte paste in a gel state is characterized by the first polymers being aligned in parallel to one another in one direction; the second polymers randomly surrounding the first polymers and having an average molecular weight that is greater than that of the first polymers; and a lithium solution provided between the first polymers and the second polymers.
Abstract:
A method of fabricating a solid polymeric electrolyte having a pattern includes mixing constituents including a liquid electrolyte, a photo-crosslinking agent, and inorganic particles to form an electrolyte paste; dispersing together the constituents of the electrolyte paste; coating the electrolyte paste on a substrate; pressing the electrolyte paste with a patterned mold having a shape to copy the shape of the patterned mold onto the electrolyte paste and provide said pattern; and illuminating an ultraviolet light onto the electrolyte paste to induce a photo-crosslinking reaction and cure the photo-crosslinking agent of the electrolyte paste, wherein said solid polymeric electrolyte includes a polymer matrix having a mesh structure, the polymer matrix being formed of the cured photo-crosslinking agent; inorganic particles distributed in the polymer matrix; and a lithium salt and an organic solvent impregnated between the polymer matrix and the inorganic particles.