摘要:
Splitting and merging database object information sharing streams. Streams are also referred to herein as “propagations”. Splitting and merging information sharing streams can be used to improve performance in a information sharing environment when a failed or slow DBS impacts the performance. In one embodiment, an auto split process monitors the progress of applying changes at each node and detects the presence of a failed or a slow node. Once the failed or slow node is identified, the auto split process splits the propagation such that the offending node is sent through a separate propagation. Furthermore, an auto merge process can be started to monitor the newly created separate propagation. At a later point, the new propagation can be merged back into the original stream. For example, if the offending node catches up with other nodes, the auto merge process merges the newly created propagation back to the original propagation.
摘要:
Systems, methodologies, media, and other embodiments associated with managing of a distributed database are described. One exemplary system embodiment includes an input logic configured to obtain information associated with a distributed database where the distributed database comprises a plurality of databases. An analysis logic analyzes the information obtained from the distributed database to determine performance information associated with the distributed database and, an output logic can provide information regarding the performance information associated with the distributed database.
摘要:
Efficiently replicating XML data among databases includes techniques for (a) replicating XML data involved with an insert operation; (b) replicating XML data involved with an update operation; (c) leveraging existing relational replication techniques for XML data stored in shredded form using object-relational constructs; and (d) replicating XQuery Data Model sequences. Each technique reduces the amount of information that would otherwise need to be transmitted over a network for XML data replication purposes.
摘要:
Instances of complex types are logically replicated. In general, the logical replication of complex types involves converting a complex type instance from its storage format into a logical representation written in a markup language, like XML. The logical representation is then propagated to a destination (or destinations), which converts the logical representation to a storage format used at the destination for that complex type.
摘要:
Instances of complex types are logically replicated. In general, the logical replication of complex types involves converting a complex type instance from its storage format into a logical representation written in a markup language, like XML. The logical representation is then propagated to a destination (or destinations), which converts the logical representation to a storage format used at the destination for that complex type.
摘要:
Methods and systems for estimating the hypothetical performance of a messaging application are disclosed. A number of pool sizes may be identified, each pool size being a potential size for the memory allocated to the messaging application. An online simulation is running during the execution of the messaging application. The online simulation tracks the requests made by the messaging application and predicts the operation of the messaging application for each pool size. The data predicted includes the number of spill and unspill operations that read and write to disk. In addition, a method for calculating the age of the oldest message in a memory pool is disclosed. The age is used in determining the number of spill and unspill operations.
摘要:
A method for applying changes to a standby system is described in which multiple apply tasks or “slaves” are scheduled to changes from redo logs, especially those changes in large transactions, in parallel and as soon as they are encountered in the logs. To foster data convergence, a partial ordering may be imposed on the transactions so that those transactions that actually depend on others are forced to wait on the transactions they are dependent upon commit. To foster read consistency, synchronization points may be periodically established, at which points a read consistent state of the standby database system can be obtained-all without adversely impact the throughput of the system.
摘要:
A framework for the incrementally refreshing a materialized view is provided. The materialized view is based on a query that references a projected table and another set of base tables. The query projects the columns of the projected table. To refresh the materialized view, a set of tuples is computed that identify rows to delete, insert, or otherwise modify in the materialized view in order to refresh it. The set of tuples is computed by computing a set of intersections, (1) one for the intersection between the query and the change log of the projected table, and (2) at least one other between the equijoin of the change log for one of the other base tables and the projected table. The query may define an equijoin between the projected table and at least one base table based on equijoin conditions that define a many-to-many relationship or a one-to-many relationship.