Abstract:
Disclosed is a DC voltage conversion circuit of a liquid crystal display apparatus, including: a main pumping circuit including a plurality of thin film transistors and configured to output voltage for driving a liquid crystal display apparatus when the plurality of thin film transistors are alternately turned on or off; and a switch control signal generator configured to control voltages applied to gates of the plurality of thin film transistors by inversion of a clock signal, in which each thin film transistor is turned on when positive gate-source voltage is applied thereto, and turned off when negative gate-source voltage is applied thereto.
Abstract:
Disclosed is a method for manufacturing an oxide thin film transistor, including: forming a gate electrode on a substrate on which a buffer layer is formed; forming a gate insulation layer on an entire surface of the substrate on which the gate electrode is formed; forming an oxide semiconductor layer on the gate insulation layer; forming a first etch stop layer on the oxide semiconductor layer; forming a second etch stop layer on the first etch stop layer by an atomic layer deposition method; patterning the first etch stop layer and the second etch stop layer, or forming a contact hole, through which a part of the oxide semiconductor layer is exposed, in the first etch stop layer and the second etch stop layer; forming a source electrode and a drain electrode on the first etch stop layer and the second etch stop layer; and forming a passivation layer on the entire surface of the substrate on which the source electrode and the drain electrode are formed.
Abstract:
Disclosed is a dual mode function pixel that operates either in a first mode or in a second mode according to the intensity of a projected light to have a high visibility regardless of the intensity of projected light. The dual mode function pixel includes: a first membrane on which a self-luminescent element is formed; one or more membranes formed to surround the first membrane; and a lower layer formed below the first membrane and the one or more membranes to be spaced apart from the first membrane and the one or more membranes. The dual mode function pixel is controlled such that the self-luminescent element is driven either to emit light in a first mode operation or to selectively reflect a projected light by utilizing an interference of light generated between the first to one or more membranes and the lower layer in a second mode operation.