Abstract:
Disclosed are a self-aligned thin film transistor controlling a diffusion length of a doping material using a doping barrier in a thin film transistor having a self-aligned structure and a method of manufacturing the same. The self-aligned thin film transistor with a doping barrier includes: an active layer formed on a substrate and having a first doping region, a second doping region, and a channel region; a gate insulating film formed on the channel region; a gate electrode formed on the gate insulating film; a doping source film formed on the first doping region and the second doping region; and a doping barrier formed between the doping source film and the first doping region and between the doping source film and the second doping region.
Abstract:
Disclosed are an inverter, a NAND gate, and a NOR gate. The inverter includes: a pull-up unit constituted by a second thin film transistor outputting a first power voltage to an output terminal according to a voltage applied to a gate; a pull-down unit constituted by a fifth thin film transistor outputting a ground voltage to the output terminal according to an input signal applied to a gate; and a pull-up driver applying a second power voltage or the ground voltage to the gate of the second thin film transistor according to the input signal.
Abstract:
Disclosed are an inverter, a NAND gate, and a NOR gate. The inverter includes: a pull-up unit constituted by a second thin film transistor outputting a first power voltage to an output terminal according to a voltage applied to a gate; a pull-down unit constituted by a fifth thin film transistor outputting a ground voltage to the output terminal according to an input signal applied to a gate; and a pull-up driver applying a second power voltage or the ground voltage to the gate of the second thin film transistor according to the input signal.
Abstract:
Disclosed are a self-aligned thin film transistor capable of simultaneously improving an operation speed and stability and minimizing a size thereof by forming source and drain electrodes so as to be self-aligned, and a fabrication method thereof. The method of fabricating a thin film transistor according to an exemplary embodiment of the present disclosure includes: forming an active layer, a gate insulator, and a gate layer on a substrate; forming a photoresist layer pattern for defining a shape of a gate electrode on the gate layer; etching the gate layer, the gate insulator, and the active layer by using the photoresist layer pattern; depositing a source and drain layer on the etched substrate by a deposition method having directionality; and forming a gate electrode and self-aligned source electrode and drain electrode by removing the photoresist layer pattern.
Abstract:
Disclosed are a self-aligned thin film transistor capable of simultaneously improving an operation speed and stability and minimizing a size thereof by forming source and drain electrodes so as to be self-aligned, and a fabrication method thereof. The method of fabricating a thin film transistor according to an exemplary embodiment of the present disclosure includes: forming an active layer, a gate insulator, and a gate layer on a substrate; forming a photoresist layer pattern for defining a shape of a gate electrode on the gate layer; etching the gate layer, the gate insulator, and the active layer by using the photoresist layer pattern; depositing a source and drain layer on the etched substrate by a deposition method having directionality; and forming a gate electrode and self-aligned source electrode and drain electrode by removing the photoresist layer pattern.
Abstract:
Disclosed are an inverter, a NAND gate, and a NOR gate. The inverter includes: a pull-up unit constituted by a second thin film transistor outputting a first power voltage to an output terminal according to a voltage applied to a gate; a pull-down unit constituted by a fifth thin film transistor outputting a ground voltage to the output terminal according to an input signal applied to a gate; and a pull-up driver applying a second power voltage or the ground voltage to the gate of the second thin film transistor according to the input signal.
Abstract:
Disclosed is a method for manufacturing an oxide thin film transistor, including: forming a gate electrode on a substrate on which a buffer layer is formed; forming a gate insulation layer on an entire surface of the substrate on which the gate electrode is formed; forming an oxide semiconductor layer on the gate insulation layer; forming a first etch stop layer on the oxide semiconductor layer; forming a second etch stop layer on the first etch stop layer by an atomic layer deposition method; patterning the first etch stop layer and the second etch stop layer, or forming a contact hole, through which a part of the oxide semiconductor layer is exposed, in the first etch stop layer and the second etch stop layer; forming a source electrode and a drain electrode on the first etch stop layer and the second etch stop layer; and forming a passivation layer on the entire surface of the substrate on which the source electrode and the drain electrode are formed.
Abstract:
Disclosed is a DC voltage conversion circuit of a liquid crystal display apparatus, including: a main pumping circuit including a plurality of thin film transistors and configured to output voltage for driving a liquid crystal display apparatus when the plurality of thin film transistors are alternately turned on or off; and a switch control signal generator configured to control voltages applied to gates of the plurality of thin film transistors by inversion of a clock signal, in which each thin film transistor is turned on when positive gate-source voltage is applied thereto, and turned off when negative gate-source voltage is applied thereto.
Abstract:
Disclosed is a method for manufacturing an oxide thin film transistor, including: forming a gate electrode on a substrate on which a buffer layer is formed; forming a gate insulation layer on an entire surface of the substrate on which the gate electrode is formed; forming an oxide semiconductor layer on the gate insulation layer; forming a first etch stop layer on the oxide semiconductor layer; forming a second etch stop layer on the first etch stop layer by an atomic layer deposition method; patterning the first etch stop layer and the second etch stop layer, or forming a contact hole, through which a part of the oxide semiconductor layer is exposed, in the first etch stop layer and the second etch stop layer; forming a source electrode and a drain electrode on the first etch stop layer and the second etch stop layer; and forming a passivation layer on the entire surface of the substrate on which the source electrode and the drain electrode are formed.