Abstract:
A method for calculating an altitude of a target through an apparatus for calculating an altitude of the target, which comprises a plurality of MIMO radar virtual antennas, may comprise: receiving electromagnetic waves reflected from the target through a pair of virtual antennas classified into an upper antenna and a lower antenna and alternately arranged in two columns linearly; obtaining range information and phase information of the target from the pair of virtual antennas by analyzing the electromagnetic waves; and calculating altitude information of the target from position information of the pair of virtual antennas, and the range information and the phase information.
Abstract:
A method of transmitting and receiving an orthogonal frequency division multiplexing (OFDM) signal for radio detection and ranging (radar) applications, and apparatuses performing the method are disclosed. The method includes receiving an OFDM signal in which a cyclic prefix (CP) is not included and converting the received OFDM signal to a received discrete time-domain signal through an analog-to-digital converter (ADC), selecting sub-carrier symbols to be input to a fast Fourier transform (FFT) from among all sub-carrier symbols included in the received discrete time-domain signal by performing windowing on the received discrete time-domain signal by a window that is based on an estimated value of a maximum delay that occurs potentially in a channel, converting the received discrete time-domain signal to a received frequency-domain signal by inputting the selected sub-carrier symbols to the FFT, and performing channel estimation based on the received frequency-domain signal.
Abstract:
An apparatus for orbital angular momentum (OAM) mode combination and an antenna apparatus for multi-mode generation are provided. The apparatus for OAM mode combination includes three input ports configured to receive independent OAM mode signals, four output ports configured to output OAM mode signals with the same or different phase delays; and a circuit element configured to simultaneously combine or distribute the OAM mode signals by controlling phases of output signals output through the four output ports to be different depending on the OAM mode signals received through the input ports.
Abstract:
A reflectarray antenna for wireless telecommunication includes a ground plane; a dielectric substrate attached on the ground plane; and a first antenna patch formed on one side of the dielectric substrate. Further, the reflectarray antenna includes a second antenna patch formed adjacent to the first antenna patch with a separation area therebetween; and a phase adjustment member disposed in the separation area to adjust a phase of a scattered field of the antenna by the appliance of a DC voltage.
Abstract:
A wireless link apparatus includes a plurality of antennas; a signal detector configured to calculate SNR based on a signal received from at least one of the plurality of antennas; and a mode selector configured to determine the number of an antenna to be used in modulation method and signal transmission by comparing the calculated SNR with a preset critical value. Further, the wireless link apparatus includes a transmitter configured to modulate a signal in the modulation method determined by the mode selector and transmit the modulated signal using an antenna corresponding to the determined number of the antennas.
Abstract:
A volume-rate food-waste disposal apparatus recognizes a user who discharges food-waste into the food-waste disposal apparatus to produce source information and weights the food-waste to produce weight information. The food-waste disposal apparatus receives an electrical power in a wireless manner and dries the food-waste using magnetic waves. The food-waste disposal apparatus transmits the source information and the source information to a charging server so that an on-line food-waste disposal fee per source is billed on a basis of a prefixed food-waste disposal fee per weight.
Abstract:
A transceiving apparatus may comprise a radiator emitting a beam; a receiver receiving a beam; a first sub-reflector which is provided to face the radiator and changes an orbital angular momentum (OAM) mode order of a beam; a second sub-reflector which is provided to face the receiver and changes an OAM mode order of a beam differently from the first sub-reflector; and a main reflector which is provided to face the first sub-reflector and the second sub-reflector.
Abstract:
The present invention provides an array antenna apparatus for a rotation mode, a wireless communication terminal, and a method thereof. The apparatus according to the exemplary embodiment includes an antenna array including a plurality of antenna elements; and a control unit which determines an antenna pattern in accordance with a transmission/reception characteristic of a signal and assigns a weight to antenna elements in a position corresponding to the determined antenna pattern on the antenna array to implement a rotation mode antenna based on the antenna element to which the weight is assigned.
Abstract:
Provided is an energy charging apparatus including a transponder configured to transmit and receive radio energy, and a resonator configured to transmit the radio energy transmitted from the transponder to at least one external device and transmit the radio energy received from the at least one external device to the transponder, wherein each of the transponder and the resonator is provided in a form of a single module.
Abstract:
Provided is an apparatus and method for simultaneously transmitting and receiving orbital angular momentum (OAM) modes. An apparatus for transmitting OAM modes may include a mode multiplexing apparatus, and a matrix array antenna configured to output OAM modes for electromagnetic waves based on mode signals, wherein the mode multiplexing apparatus may include hybrid couplers configured to generate a plurality of output signals having different phases and different amplitudes by mixing and distributing a plurality of input signals, and phase shifters configured to generate the mode signals by shifting the phases of the output signals.