Abstract:
A method for providing anti-skid braking control for a vehicle having a plurality of wheels, each wheel including a corresponding wheel speed sensor and brake, wherein when velocity data from at least one wheel speed sensor is lost, velocity data from a wheel speed sensor coupled to a different wheel is used as the wheel speed for the wheel with the non-operational sensor.
Abstract:
Systems and methods are disclosed for parking brake systems for use in, for example, an aircraft. In this regard, a system is provided comprising a parking brake system for an aircraft comprising an electric motor coupled to a high gear ratio transmission, a first clutch for engaging the electric motor to a propulsion transmission, and a second clutch for engaging propulsion transmission to an aircraft wheel. The high gear ratio transmission has a gear ratio sufficient to maintain the aircraft wheel in a stationary position.
Abstract:
Systems and methods disclosed herein may be useful for use in landing identification. In this regard, a method is provided comprising receiving pulse information over a first time period, wherein the pulse information is indicative of an angular distance traveled by a first wheel, comparing the pulse information to a threshold value, and determining a likelihood of a landing event based upon the comparison. In various embodiments, a system is provided comprising a monstable multivibrator in electrical communication with a metal-oxide-semiconductor field-effect transistor (MOSFET), a resistor-capacitor network in electrical communication with the MOSFET, and a comparator that receives a voltage from the resistor-capacitor network and a reference voltage.
Abstract:
Systems and methods facilitate the monitoring of tire pressure, the detection/determination of wheel speed, or a combination thereof. A system is provided comprising a hub cap, a target coupled to the hub cap, and at least two displacement sensors configured to measure a displacement between each displacement sensor and the target. The target has a variable thickness, and the target comprises a hollow vessel in fluid communication with a tire.
Abstract:
Systems and methods disclosed herein may be useful for braking systems for use in, for example, an aircraft. A method is disclosed comprising determining, at a brake controller, an aircraft reference speed for an aircraft having a first wheel and a second wheel, identifying, at the brake controller, a state comprising the first wheel having a different rotational velocity than the second wheel, wherein the difference in rotational velocity sums to about zero, calculating, at the brake controller, a compensation factor for at least one of the first wheel and the second wheel, and adjusting, at the brake controller, a locked wheel trigger velocity in accordance with the compensation factor.
Abstract:
Systems and methods disclosed herein may be useful for manual braking systems for use in, for example, an aircraft. A system is disclosed that allows for manual braking. For example, a system is provided comprising a brake handle, a potentiometer in mechanical communication with the brake handle, a mapping module in electrical communication with the potentiometer, wherein the mapping module receives an output voltage from the potentiometer, wherein the mapping module produces a braking command output.
Abstract:
Systems and methods for determining aircraft brake pedal sensor failure are provided. A brake pedal sensor and/or a brake pedal may be “failed” if brake pedal sensor readings unlikely to be generated as a result of human input are detected. The method comprises acquiring brake pedal measurements from a brake pedal sensor, determining a state of the brake pedal sensor, and providing a notification of the state. Each brake pedal measurement comprises a brake pedal deflection amount. The brake pedal sensor test algorithm may be conducted at regular intervals, in preparation for aircraft landing, at the request of a human operator, and the like.
Abstract:
A method for providing anti-skid braking control for a vehicle having a plurality of wheels, each wheel including a corresponding wheel speed sensor and brake, wherein when velocity data from at least one wheel speed sensor is lost, velocity data from a wheel speed sensor coupled to a different wheel is used as the wheel speed for the wheel with the non-operational sensor.
Abstract:
Systems and methods facilitate the monitoring of tire pressure, the detection/determination of wheel speed, or a combination thereof. A system is provided comprising a hub cap, a target coupled to the hub cap, and at least two displacement sensors configured to measure a displacement between each displacement sensor and the target. The target has a variable thickness, and the target comprises a hollow vessel in fluid communication with a tire.
Abstract:
A system, apparatus and method provide a means for indicating an overload condition has occurred during aircraft operation. The occurrence of an overload condition is automatically determined and an indication output thereof. Based on the indication received by the cockpit, avionics, maintenance, etc., further action may be taken to correct the effects of the overload condition on the tires and/or landing gear.