Abstract:
A motor drive of an embodiment of the present invention includes a PWM converter for converting AC power inputted from a low voltage AC power source into DC power by PWM control, an inverter for converting the received DC power to AC power to drive a motor, and a capacitor connected between the PWM converter and the inverter. The PWM converter is operated so as to limit input and output currents or input and output power to predetermined values, and supplied from the low voltage AC power source with a lower voltage than a voltage required to drive the motor. The PWM converter boosts a DC link voltage being an output voltage to the voltage able to drive the motor, and thereby serves to increase the potential difference of the capacitor between charged and discharged states to reduce the capacitance of the capacitor.
Abstract:
The rectifier includes: a main circuit unit configured to perform power conversion between AC power on a side of a three-phase AC power supply and DC power on a DC side by rectifying operation of a rectifying device and ON-OFF operation of a switching device; a power calculation unit configured to calculate a value of a power flowing between the side of the three-phase AC power supply and the DC side via the main circuit unit; and a control unit configured to perform control to execute the ON-OFF operation of the switching device, wherein the control unit changes a length of an ON period per cycle in the ON-OFF operation executed on the switching device according to the value of the power calculated by the power calculation unit.
Abstract:
A motor driving device includes a printed board on which a pattern is printed, and a resin board which is formed by molding a resin and on which no pattern is printed, and the printed board is provided on the resin board.
Abstract:
A motor drive device capable of attaching a fan unit to a mounting member more easily. The motor drive device includes the mounting member formed with a mounting hole, the fan unit including a lid positioned facing the mounting member to cover the mounting hole and being fixed to the mounting member, and a restricting member movably attached to the lid, the restricting member being movable between a restriction position for engaging with the mounting member and a non-restriction position for releasing from the mounting member.
Abstract:
A motor drive of an embodiment of the present invention includes a PWM converter for converting AC power inputted from a low voltage AC power source into DC power by PWM control, an inverter for converting the received DC power to AC power to drive a motor, and a capacitor connected between the PWM converter and the inverter. The PWM converter is operated so as to limit input and output currents or input and output power to predetermined values, and supplied from the low voltage AC power source with a lower voltage than a voltage required to drive the motor. The PWM converter boosts a DC link voltage being an output voltage to the voltage able to drive the motor, and thereby serves to increase the potential difference of the capacitor between charged and discharged states to reduce the capacitance of the capacitor.
Abstract:
A motor driving device includes a heat sink, a rectifier provided on the heat sink and configured to rectify an AC voltage supplied from an AC power supply to a DC voltage, a charging resistor provided on the heat sink and configured to be used for charging a smoothing capacitor for smoothing the DC voltage rectified by the rectifier, and a temperature sensor with which the charging resistor is provided.
Abstract:
A motor control device includes a rectifier which converts AC power into DC power and outputs it to a DC link, an inverter which converts the DC power of the DC link into AC power for each motor and outputs it, an AC voltage detection unit which detects an AC voltage value on the AC input side of the rectifier, a state determination unit which determines that a voltage dropped state has been set when the AC voltage value is smaller than a certain specified voltage and that a normal state has been set when the AC voltage value is equal to or larger than the specified voltage, and an output control unit which controls each motor in accordance with the amount of voltage drop with respect to the specified voltage of the AC voltage value when the state determination unit determines that the voltage dropped state has been set.
Abstract:
A motor drive apparatus includes an inverter which has an upper and lower arms each provided with a plurality of semiconductor switching devices and free-wheeling diodes connected in reverse parallel with respective ones of the plurality of semiconductor switching devices, wherein the semiconductor switching devices are controlled on and off to convert DC to AC, a short-circuiting unit which includes a selector switch between motor phase windings of a synchronous motor, the selector switch being opened and closed under the control of a command, and a dynamic braking control unit which, upon reception of a dynamic braking start command, performs control so as to turn on all of the semiconductor switching devices provided in either one of the upper and lower arms and to turn off all of the semiconductor switching devices provided in the other arm, and thereafter controls the short-circuiting unit so that the selector switch is closed.