Abstract:
A suspension system includes a first suspension member movable relative to a second suspension member, a fluid reservoir having a volume, the volume variable in response to a relative movement between the first and second suspension members, and a fluid flow circuit having a first end in fluidic communication with the fluid reservoir and a second end in fluidic communication with an isolated suspension location, the fluid flow circuit comprising a first valve, a second valve and a third valve, wherein said first and third valves are in parallel with each other and the second valve is in series with each of the first and third valves.
Abstract:
A bicycle fork includes a pair of fork leg assemblies, each of the leg assemblies having an upper leg telescopingly engaged with a lower leg. A damping assembly is provided in at least one of the legs. The damping assembly includes lock-out and blow-off compression circuits. These compression circuits are externally adjustable without tools. Furthermore, these two compression circuits may be adjusted independently of each other.
Abstract:
A user accessible shock travel spacer assembly is disclosed herein. The system is used on a shock assembly having a shaft with an initial predefined stroke length. A retaining cap having a retaining cap thickness and a retaining cap opening therethrough. The retaining cap opening having a diameter that is larger than an outer diameter (OD) of a shaft of a shock assembly. At least one fastener to fasten the retaining cap with a portion of the shock assembly about the shaft, such that the retaining cap reduces a stroke length of the shaft of the shock assembly by the retaining cap thickness.
Abstract:
An air bleed system for a suspension fork or shock absorber includes: a fluid passage between an interior of the suspension and an exterior of the suspension; and an automatic air bleed assembly having a material with oleophobic and hydrophobic properties to allow the fluid passage to remain open while limiting the introduction of external fluid into the interior of the suspension and limiting the escape of internal fluid out of the interior of the suspension.
Abstract:
An air bleed system for a suspension fork or shock absorber includes: a fluid passage between an interior of the suspension and an exterior of the suspension; and a manually operable valve having a first position substantially closing the fluid passage and a second position allowing fluid flow between the interior and the exterior.
Abstract:
An axle adapter assembly, configured for enabling conversion of an axle installed on a vehicle to fit different center bore sizes of wheel hubs, including: an axle configured for coupling dropouts of fork legs of a lower fork; adapters configured for being inserted within the dropouts; the adapters configured for engaging an outer surface of the axle and retaining the axle upon engagement; and axle pinch shims configured for being inserted into slits of the dropouts and the adapters, wherein upon the insertion, the adapters are aligned with the dropouts, such that shoulders of the adapters retain edges of a wheel hub of the wheel hubs.
Abstract:
An air bleed system for a suspension fork or shock absorber includes: a fluid passage between an interior of the suspension and an exterior of the suspension; and a manually operable valve having a first position substantially closing the fluid passage and a second position allowing fluid flow between the interior and the exterior.
Abstract:
An air bleed system for a suspension fork or shock absorber includes: a fluid passage between an interior of the suspension and an exterior of the suspension; and a manually operable valve having a first position substantially closing the fluid passage and a second position allowing fluid flow between the interior and the exterior.
Abstract:
An axle adapter assembly, configured for enabling conversion of an axle installed on a vehicle to fit different center bore sizes of wheel hubs, including: an axle configured for coupling dropouts of fork legs of a lower fork; adapters configured for being inserted within the dropouts; the adapters configured for engaging an outer surface of the axle and retaining the axle upon engagement; and axle pinch shims configured for being inserted into slits of the dropouts and the adapters, wherein upon the insertion, the adapters are aligned with the dropouts, such that shoulders of the adapters retain edges of a wheel hub of the wheel hubs.
Abstract:
A suspension system includes a first suspension member movable relative to a second suspension member, a fluid reservoir having a volume, the volume variable in response to a relative movement between the first and second suspension members, and a fluid flow circuit having a first end in fluidic communication with the fluid reservoir and a second end in fluidic communication with an isolated suspension location, the fluid flow circuit comprising a first valve, a second valve and a third valve, wherein said first and third valves are in parallel with each other and the second valve is in series with each of the first and third valves.