-
11.
公开(公告)号:US20240127135A1
公开(公告)日:2024-04-18
申请号:US18398701
申请日:2023-12-28
Applicant: FREEPORT MINERALS CORPORATION
Inventor: Dana Geislinger , Travis Gaddie , Margaret Alden Tinsley , Muneeb Alam , Steven Chad Richardson , Akaash Sanyal , Raquel Crossman , Tianfang Ni , Cory A. Demieville , Luke Gerdes , Robyn Freeman , Oleksandr Klesov , Luciano Kiniti Issoe
IPC: G06Q10/04 , C22B3/06 , C22B15/00 , G06Q10/0631 , G06Q50/02
CPC classification number: G06Q10/04 , C22B3/06 , C22B15/0067 , C22B15/0095 , G06Q10/0631 , G06Q50/02
Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
-
公开(公告)号:US20230419249A1
公开(公告)日:2023-12-28
申请号:US17850895
申请日:2022-06-27
Applicant: FREEPORT MINERALS CORPORATION
Inventor: Travis Gaddie , Dana Geislinger , Margaret Alden Tinsley , Luciano Kiniti Issoe , Tianfang Ni , Muneeb Alam , Luke Gerdes , Oleksandr Klesov , Steven Chad Richardson , Akaash Sanyal , Raquel Crossman , Cory A. Demieville , Robyn Freeman
IPC: G06Q10/08
CPC classification number: G06Q10/087
Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
-
13.
公开(公告)号:US20230419199A1
公开(公告)日:2023-12-28
申请号:US18339998
申请日:2023-06-22
Applicant: FREEPORT MINERALS CORPORATION
Inventor: Dana Geislinger , Travis Gaddie , Margaret Alden Tinsley , Muneeb Alam , Steven Chad Richardson , Akaash Sanyal , Raquel Crossman , Tianfang Ni , Cory A. Demieville , Luke Gerdes , Robyn Freeman , Oleksandr Klesov , Luciano Kiniti Issoe
IPC: G06Q10/04 , G06Q50/02 , C22B15/00 , G06Q10/0631 , C22B3/06
CPC classification number: G06Q10/04 , G06Q50/02 , C22B15/0095 , G06Q10/0631 , C22B15/0067 , C22B3/06
Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
-
公开(公告)号:US20230419197A1
公开(公告)日:2023-12-28
申请号:US18306534
申请日:2023-04-25
Applicant: FREEPORT MINERALS CORPORATION
Inventor: Dana Geislinger , Travis Gaddie , Margaret Alden Tinsley , Muneeb Alam , Steven Chad Richardson , Akaash Sanyal , Raquel Crossman , Tianfang Ni , Cory A. Demieville , Luke Gerdes , Robyn Freeman , Oleksandr Klesov , Luciano Kiniti Issoe
IPC: G06Q10/04 , G06Q50/02 , G06Q10/0631 , C22B15/00 , C22B3/06
CPC classification number: G06Q10/04 , G06Q50/02 , G06Q10/0631 , C22B15/0095 , C22B3/06 , C22B15/0067
Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
-
公开(公告)号:US11681959B1
公开(公告)日:2023-06-20
申请号:US17985446
申请日:2022-11-11
Applicant: FREEPORT MINERALS CORPORATION
Inventor: Dana Geislinger , Travis Gaddie , Margaret Alden Tinsley , Muneeb Alam , Steven Chad Richardson , Akaash Sanyal , Raquel Crossman , Tianfang Ni , Cory A. Demieville , Luke Gerdes , Robyn Freeman , Oleksandr Klesov , Luciano Kiniti Issoe
IPC: G06Q10/04 , G06Q50/02 , G06Q10/0631 , C22B15/00 , C22B3/06
CPC classification number: G06Q10/04 , C22B3/06 , C22B15/0067 , C22B15/0095 , G06Q10/0631 , G06Q50/02
Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
-
公开(公告)号:US12288169B2
公开(公告)日:2025-04-29
申请号:US18736402
申请日:2024-06-06
Applicant: FREEPORT MINERALS CORPORATION
Inventor: Dana Geislinger , Travis Gaddie , Margaret Alden Tinsley , Muneeb Alam , Steven Chad Richardson , Akaash Sanyal , Raquel Crossman , Tianfang Ni , Cory A. Demieville , Luke Gerdes , Robyn Freeman , Oleksandr Klesov , Luciano Kiniti Issoe
Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
-
公开(公告)号:US12259256B2
公开(公告)日:2025-03-25
申请号:US17850880
申请日:2022-06-27
Applicant: FREEPORT MINERALS CORPORATION
Inventor: Dana Geislinger , Margaret Alden Tinsley , Akaash Sanyal , Robyn Freeman , Travis Gaddie , Muneeb Alam , Steven Chad Richardson , Raquel Crossman , Tianfang Ni , Cory A. Demieville , Luke Gerdes , Oleksandr Klesov , Luciano Kiniti Issoe
IPC: G01C21/00
Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
-
公开(公告)号:US20240418697A1
公开(公告)日:2024-12-19
申请号:US18817158
申请日:2024-08-27
Applicant: FREEPORT MINERALS CORPORATION
Inventor: Cory A. Demieville , Dana Geislinger , Travis Gaddie , Margaret Alden Tinsley , Muneeb Alam , Steven Chad Richardson , Akaash Sanyal , Raquel Crossman , Tianfang Ni , Luke Gerdes , Robyn Freeman , Oleksandr Klesov , Luciano Kiniti Issoe
IPC: G01N33/24 , G01N15/0227
Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
-
公开(公告)号:US12163788B2
公开(公告)日:2024-12-10
申请号:US17850884
申请日:2022-06-27
Applicant: FREEPORT MINERALS CORPORATION
Inventor: Luciano Kiniti Issoe , Tianfang Ni , Luke Gerdes , Dana Geislinger , Travis Gaddie , Margaret Alden Tinsley , Muneeb Alam , Steven Chad Richardson , Akaash Sanyal , Raquel Crossman , Cory A. Demieville , Robyn Freeman , Oleksandr Klesov
Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
-
公开(公告)号:US12111303B2
公开(公告)日:2024-10-08
申请号:US17850866
申请日:2022-06-27
Applicant: FREEPORT MINERALS CORPORATION
Inventor: Cory A. Demieville , Dana Geislinger , Travis Gaddie , Margaret Alden Tinsley , Muneeb Alam , Steven Chad Richardson , Akaash Sanyal , Raquel Crossman , Tianfang Ni , Luke Gerdes , Robyn Freeman , Oleksandr Klesov , Luciano Kiniti Issoe
IPC: G01N33/24 , G01N15/0227
CPC classification number: G01N33/24 , G01N15/0227
Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
-
-
-
-
-
-
-
-
-