Abstract:
Apparatus, including a pump system, features a controller having a signal processor or processing module configured to: receive signaling containing information about a relationship between frequencies of pump vibration resonances detected around critical pump speeds and a 3-dimensional pump vibration power spectrum in the frequency domain with respect to pump speed and pump temperature change differences; and determine corresponding signaling containing information to adjust the pump speed to avoid the pump vibration resonances around the critical pump speeds, based upon the signaling received. The signal processor or processing module is also configured to provide the corresponding signaling as control signaling to adjust the pump speed.
Abstract:
A pumping system featuring a pump, motor, a bearing assembly, integrated data acquisition system and combined programmable logic controller (PLC), data acquisition and modem. The pump couples to a pump shaft that responds to a pump shaft force to pump a liquid. The motor couples to the pump shaft, responds to VFD/VSD control signaling and provides the pump shaft force to drive the pump shaft. The bearing assembly includes a bearing with the pump shaft arranged therein and couples the pump and the motor. The variable frequency/speed drive (VFD/VSD) receives PLC control signaling and provides the VFD/VSD control signaling to drive the motor. The integrated data acquisition system responds to PLC data acquisition signaling, and provides integrated data acquisition system signaling containing information about an integrated set of pumping system parameters related to the pump, the bearing assembly, the motor and the VFD/VSD in the pump system. The combined programmable logic controller (PLC), data acquisition and modem provides the PLC data acquisition signaling and receive the integrated data acquisition signaling, provides PLC data acquisition modem signaling that exports performance data to the Internet to allow remote manual monitoring of the pump system, and provides the PLC control signaling to control the VFD/VSD and operate the pumping system as a controlled, closed loop system.
Abstract:
The present invention provides a numerical affinity pump sensorless conversion signal processing technique, e.g. based upon processing the pump differential pressure, flow rate and power at pump maximum speed published by pump manufacturers, as well as the pump affinity law in order to obtain instant pump differential pressures and flow rate directly and numerically. The sensorless converter technique may be applied to any form of pump characteristics distributions simple or complicated, since there is no need to reconstruct and to solve any pump and system characteristics equations. As a result, the computation accuracy is significantly improved.
Abstract:
The present invention provides apparatus featuring a signal processor or processing module that may be configured at least to: process signaling containing information about an equilibrium point of pump differential pressure and system pressure formulated in a hydronic domain by utilizing pump and system characteristic curve equations so as to yield system pressure and flow rate at any particular load and time in a pump hydronic system, including using a multi-dimensional sensorless conversion technique; and determine equivalent hydronic system characteristics associated with the pump differential pressure and flow rate to their corresponding motor power and speed reconstructed and remapped by using a discrete numerical approach, based at least partly on the signaling received. The signal processor or processing module may provide corresponding signaling containing information about the system pumping flow rate and pressure determined.
Abstract:
A switch assembly features an automatic switch and an electronic circuit board. The automatic switch has a common contact and a normally open switch contact to short when a boiler has sufficient water, and has the common contact and a normally closed switch contact to short when the boiler has a low water level. The electronic circuit board has a signal processor, a reset switch, and a low water status LED for providing a status indication of a low water condition that remains ON even if the water level has risen unless the reset switch is reset. The signal processor couples to the common contact, the normally closed switch contact and the normally open switch contact, senses signaling containing the status of the common contact, the normally closed switch contact and the normally open switch contact, provides corresponding signaling to turn ON the low water status LED when the water level is low, and responds to a reset switch signal and turn OFF the low water status LED.
Abstract:
A switch assembly includes an automatic type 11 switch having 1 and 2 contacts and 3 and 4 contacts with the 2 and 3 contacts being shorted together, configured to respond to a water level of a boiler, short the 1 and 2 contacts when the water level is high, short the 3 and 4 contacts when the water level is low; and an electronic circuit board having a processor configured to sense signaling containing information about the 1, 2/3 and 4 contacts, and provide control signaling containing information about the water level of the boiler. The electronic circuit board also includes a relay configured to respond to the control signaling, and turn the relay on/off.
Abstract:
A technique for determining a boiler water condition includes a boiler controller (aka PSE unit) having a signal processor that implements a boiler control algorithm to receive signaling containing information about sets of N consecutive probe data samples related to a boiler water condition; determine stable average signaling containing information about a stable average by averaging a set of N consecutive probe data samples in the signaling received; determine present stable average signaling containing information about a present stable average by averaging a present set of N consecutive probe data samples in the signaling received; and determine corresponding signaling containing information about the boiler water condition, based upon whether the present stable average is within an allowable limit and a comparison of the present and previous stable average signaling determined.
Abstract:
The present invention provides apparatus that features a signal processor or processing module configured to receive signaling containing information about an adaptive or self-calibrating set point control curve and a varying equivalent system characteristic curve based at least partly on an instant pump pressure and a flow rate using an adaptive moving average filter, and equivalent hydronic system characteristics associated with the instant pump pressure and the flow rate to corresponding motor power and speed reconstructed and remapped using a discrete numerical approach; and determine an adaptive pressure set point, based at least partly on the signaling received.