Abstract:
Embodiments of the invention provide a process for selectively removing polyene compounds from a hydrocarbon stream. The process comprises the steps of contacting the polyene compounds with sulfuric acid at ambient temperature and sufficient time to form two phases. The phases consist of a hydrocarbon phase with substantially no loss in octane number and a spent acid phase. The hydrocarbon phase can then be sent to an optimized desulfurization process.
Abstract:
An improved process for the recovery of aromatic compounds from a mixture containing aromatic and non-aromatic compounds and method for retrofitting existing equipment for the same is provided. The improved process comprises the steps of recovering aromatic compounds via parallel operation of a hybrid extractive distillation/liquid-liquid extractor operation and variations thereof. Methods of quickly and economically retrofitting existing recovery process equipment for use with the improved aromatic recovery process are also disclosed.
Abstract:
A method and apparatus for purifying crude terephthalic acid from a liquid dispersion thereof also containing impurities selected from unreacted starting materials, solvents, products of side reactions and/or other undesired materials is provided. The method comprises the steps of filtering the dispersion to form a crude terephthalic acid filter cake, dissolving the filter cake in a selective crystallization solvent at an elevated temperature to form a solution, crystallizing purified terephthalic acid from the solution in the crystallization solvent by reducing the pressure and temperature of the solution, and separating the crystallized purified terephthalic acid from the solution. According to the invention, the selective crystallization solvent is non-aqueous, non-corrosive and essentially non-reactive with terephthalic acid. Preferably, the selective crystallization solvent is N-methyl pyrrolidone. The method and apparatus produces purified terephthalic acid having a purity desired for use in forming polyester resin and other products at an economically attractive rate and at operating conditions of reduced severity which require a lower capital investment and simplified processing.
Abstract:
A method and apparatus for purifying crude terephthalic acid from a liquid dispersion thereof also containing impurities selected from unreacted starting materials, solvents, products of side reactions and/or other undesired materials is provided. The method comprises the steps of filtering the dispersion to form a crude terephthalic acid filter cake, dissolving the filter cake in a selective crystallization solvent at an elevated temperature to form a solution, crystallizing purified terephthalic acid from the solution in the crystallization solvent by reducing the temperature of the solution, and separating the crystallized purified terephthalic acid from the solution. According to the invention, the selective crystallization solvent is non-aqueous, non-corrosive and essentially non-reactive with terephthalic acid. Preferably, the selective crystallization solvent is N-methyl pyrrolidone. The method and apparatus produces purified terephthalic acid having a purity desired for use in forming polyester resin and other products at an economically attractive rate and at operating conditions of reduced severity which require a lower capital investment and simplified processing.
Abstract:
An extractive distillation process for separating at least one C.sub.4 -C.sub.10 alkene (monoolefin) from at least one close-boiling alkane (paraffin) employs as solvent a mixture of (a) at least one N-alkyl-2-pyrrolidone, preferably N-methyl-2-pyrrolidone and either (b1) at least one sulfolane compound (preferably cyclotetramethylene sulfone) or (b2) at least one glycol compound (preferably tetraethylene glycol) or both (b1) and (b2).
Abstract:
A process for treating and recovering components from aldol-condensation polyol waste liquor containing sodium formate, water, polyol, and organic by-products comprising A. vacuum crystallizing and removing sodium formate; B. introducing methanol and sulfuric acid; C. distilling to remove and recover methyl formate; D. increasing the pH to about 6.5 to 7.0; E. cooling to precipitate Glauber's salt, polyol and organics; and F. adding water to dissolve and separate the Glauber's salt and recover substantially pure polyol and organics.
Abstract:
Recovering high purity benzene from hydrocarbon feedstock containing aromatics and non-aromatics is implemented by simple and low-cost modifications to conventional extractive distillation columns (EDCs). Methyl cyclohexane (MCH) that is generated through non-selective hydrogenation of toluene in hydrodesulfurization (HDS) units is a major contaminant in benzene production. To meet MCH specifications, often times the extractive distillation (ED) process for recovering purified benzene is operated with excessive benzene loss to the overhead raffinate stream, producing a lower quality non-aromatic product. Novel techniques (1) remove operational constrictions of the HDS unit on MCH production, thus lengthening the catalyst life and (2) allow the EDC to drive essentially any amount of MCH away from the bottom benzene product without concerns with benzene loss to the overhead raffinate stream and (3) recover benzene from the overhead raffinate stream to upgrade the quality of non-aromatic product and increase the benzene product recovery.
Abstract:
An energy-efficient extractive distillation process for producing anhydrous ethanol from aqueous/ethanol feeds containing any range of ethanol employs an extractive distillation column (EDC) that operates under no or greatly reduced liquid reflux conditions. The EDC can be incorporated into an integrated process for producing anhydrous ethanol used for gasoline blending from fermentation broth. By using a high-boiling extractive distillation solvent, no solvent, is entrained by the vapor phase to the EDC overhead stream, even under no liquid reflux conditions. The energy requirement and severity of the EDC can be further improved by limiting ethanol recovery in the EDC. In this partial ethanol recovery design, ethanol which remains in the aqueous stream from the EDC is recovered in a post-distillation column or the aqueous stream is recycled to a front-end pre-distillation column where the ethanol is readily recovered since the VLE curve for ethanol/water is extremely favorable for distillation.
Abstract:
An improved solvent regeneration system for extractive distillation and liquid-liquid extraction processes capable of effectively removing heavy hydrocarbons and polymeric materials that otherwise develop in a closed solvent loop. The improved process employs a light hydrocarbon displacement agent, which is at least partially soluble in the solvent to squeeze the heavy hydrocarbons and polymeric materials out of the solvent, with virtually no additional energy requirement. It has been demonstrated that the light non-aromatic hydrocarbons in the raffinate stream generated from the extractive distillation or the liquid-liquid extractive process for aromatic hydrocarbons recovery can displace not only the heavy non-aromatic hydrocarbons but also the heavy aromatic hydrocarbons from the extractive solvent, especially when the aromatic hydrocarbons in the solvent are in the C10+ molecular weight range.
Abstract:
An energy-efficient extractive distillation process for producing anhydrous ethanol from aqueous/ethanol feeds containing any range of ethanol employs an extractive distillation column (EDC) that operates under no or greatly reduced liquid reflux conditions. The EDC can be incorporated into an integrated process for producing anhydrous ethanol used for gasoline blending from fermentation broth. By using a high-boiling extractive distillation solvent, no solvent, is entrained by the vapor phase to the EDC overhead stream, even under no liquid reflux conditions. The energy requirement and severity of the EDC can be further improved by limiting ethanol recovery in the EDC. In this partial ethanol recovery design, ethanol which remains in the aqueous stream from the EDC is recovered in a post-distillation column or the aqueous stream is recycled to a front-end pre-distillation column where the ethanol is readily recovered since the VLE curve for ethanol/water is extremely favorable for distillation.