摘要:
A method of manufacturing an optical fiber wire includes applying ultraviolet curable resin onto the outer periphery of a traveling optical fiber, cooling the ultraviolet curable resin applied to the optical fiber using first cooled inert gas, and curing the ultraviolet curable resin by radiating ultraviolet rays on the ultraviolet curable resin that is cooled by the first cooled inert gas through an ultraviolet transparent tube.
摘要:
The purpose of the present invention is to provide, by a configuration or method different from conventional art, a coated optical fiber enabling reduced interface delamination between a glass fiber and a primary coating layer when the coated optical fiber is immersed in water, and a reduction of transmission loss increase. A coated optical fiber according to one embodiment of the present invention is provided with a glass fiber, a primary coating layer coated on the glass fiber, a secondary coating layer coated on the primary coating layer, and a colored layer coated on the secondary coating layer. The coated optical fiber is configured so that small water bubbles are generated substantially evenly within the primary coating layer when the coated optical fiber is immersed for 200 days in warm water of 60° C.
摘要:
The present invention provides a colored coated optical fiber which hardly has an increase in transmission loss even when immersed in water. A colored coated optical fiber according to one embodiment of the present invention includes a glass optical fiber, a primary coating layer covering the glass optical fiber, a secondary coating layer covering the primary coating layer, and a colored layer covering the secondary coating layer. A ratio of a thermal expansion coefficient of a laminate including the secondary coating layer and the colored layer covering the secondary coating layer to that of the secondary coating layer is 0.98 or more and 1.03 or less. A ratio of a glass transition temperature based on a dynamic viscoelasticity within a temperature range from −100° C. to 150° C. of the laminate to that of the secondary coating layer is 0.96 or more and 1.03 or less.
摘要:
A bare optical fiber manufacturing method includes applying an ultraviolet curable resin applied around an optical fiber; and irradiating the ultraviolet curable resin with ultraviolet light emitted from semiconductor ultraviolet light emitting elements, by use of an ultraviolet irradiation device having plural ultraviolet irradiation units each having plural positions where the ultraviolet light is emitted toward the ultraviolet curable resin, the plural positions being arranged on the same circle, the plural ultraviolet irradiation units being arranged in a traveling direction of the optical fiber such that the optical fiber passes centers of the circles, at least two of the plural ultraviolet irradiation units being differently arranged with respect to circumferential direction angles thereof around an axis that is the traveling direction of the optical fiber.
摘要:
Provided is an optical fiber ribbon and an optical fiber cable, which are adaptable to manufacture at a high velocity, in the intermittent connecting type optical fiber ribbon obtained by adhering and connecting adjacent colored optical fibers by intermittent connecting portions. In an optical fiber ribbon 2 of the present invention, since, in addition to polyol having a weight average molecular weight in a specific range, rheology control agent is contained in a specific range in a material forming an intermittent connecting portion 3, the Newtonian region between a low shear rate region and a high shear rate region of the material forming the intermittent connecting portion 3 can be adjusted. Thus, scattering of the material due to a centrifugal force generated by rotation of an application roll that applies the material at the time of manufacture and the like can be suppressed, and the application amount to colored optical fiber 1 can be stabilized. In addition, the optical fiber ribbon 2 can maintain suppression of such scattering and the like even in the manufacture at a high linear velocity.
摘要:
Provided are a coating material for an optical fiber that can improve interface adhesion between a glass optical fiber and a coating layer and can easily coat a glass optical fiber, and a coated optical fiber including the coating material and a manufacturing method thereof. The coating material for an optical fiber includes an ultraviolet curable resin; a silane coupling agent; at least one of a photoacid generator that generates an acid by light irradiation and a thermal acid generator that generates an acid by heat; and a compound including an epoxy group. A coated optical fiber has a glass optical fiber and a coating layer that coats the glass optical fiber, and at least one layer forming the coating layer is formed of the coating material for an optical fiber.
摘要:
A coated optical fiber, including a coating layer with a high elastic modulus even when a glass optical fiber is coated with resin by using an ultraviolet semiconductor light emitting element as a light source for curing resin and using a Wet-on-Wet method, is provided. A manufacturing method of the coated optical fiber includes: applying a first ultraviolet curable resin to a glass optical fiber; applying a second ultraviolet curable resin to the periphery of the first ultraviolet curable resin before curing the first ultraviolet curable resin; and irradiating the first and second ultraviolet curable resins with light in a wavelength range of 350 to 405 nm emitted from an ultraviolet semiconductor light emitting element, wherein the second ultraviolet curable resin contains a photopolymerization initiator that absorbs the light from the ultraviolet semiconductor light emitting element to generate radicals, and the photopolymerization initiator has photobleaching properties.
摘要:
A colored optical fiber including a glass optical fiber; a primary coating layer that covers the glass optical fiber; a secondary coating layer that covers the primary coating layer; and a colored layer that coats the secondary coating layer. The relaxation modulus after 24 hours at 60° C. of of the layers coated is 140 MPa or less.