Abstract:
A mobile station selects a provider such as an online sign up (OSU) provider by receiving a pre-association message including OSU selection information from a Wi-Fi network component, such as an access point in communication with the OSU provider, and sending a selection of an OSU provider in accordance with the OSU selection information to the network component. The OSU selection information excludes identification of the OSU network provider or resource, but provides other attributes to the user, such as price or service configuration. The pre-association message may be transmitted as a beacon or using ANQP.
Abstract:
A system and method are provided for traffic signaling in wireless or sensor networks. The system and method use information or bits in a Signal Field (SIG) of Physical Layer (PHY) preamble in a packet to provide traffic control information. An embodiment method implemented by a network component comprises indicating a traffic direction and a traffic type for traffic control in a SIG in a frame and transmitting the frame including the SIG. Another method comprises receiving in a frame a SIG for traffic control that indicates a transmission type and decoding the SIG field to determine whether to process remaining information in the frame if the frame comprises data payload or a Media Access Control (MAC) header.
Abstract:
A method for operating a first station includes broadcasting identifying information during a contention period after obtaining access to a communications medium used to transmit messages. The method also includes receiving a transmission intended for an access point from a second station over the communications medium, and forwarding the transmission to the access point over the communications medium.
Abstract:
A mobile station selects a provider such as an online sign up (OSU) provider by receiving a pre-association message including OSU selection information from a Wi-Fi network component, such as an access point in communication with the OSU provider, and sending a selection of an OSU provider in accordance with the OSU selection information to the network component. The OSU selection information excludes identification of the OSU network provider or resource, but provides other attributes to the user, such as price or service configuration. The pre-association message may be transmitted as a beacon or using ANQP.
Abstract:
Wireless fidelity (Wi-Fi) access points (APs) can advertise their support of both OMA-DM and SOAP-XML protocols by including protocol capability information in a broadcast or probe response message. The protocol capability information can include an OSU method list subfield that indicates that the Wi-Fi AP supports both OMA-DM and SOAP-XML protocols. The broadcast message may be an Access Network Query Protocol (ANQP) message, a beacon message, or some other generic advertisement services (GAS) message. Wi-Fi APs can also specify which WLAN type is preferred by a network operator by including a WLAN access type indication in a broadcast or probe response message. The WLAN access type indication may specify that a network operator prefers a passpoint, non-passpoint, vendor specific WLAN. The WLAN access type indication may be included in an access network discovery and selection function (ANDSF) management object (MO).
Abstract:
A system and methods are provided to enable differentiated association of stations (STAs) in a WiFi system and provide differentiated quality of service (QoS) based association. The embodiments include categorizing STAs that share a channel of the WiFi network into different association priority classes, wherein the STAs with higher association priority classes wait for shorter times before starting association with an access point (AP) over the shared channel. The association priority classes are assigned by the AP or the WiFi network and signaled to the STAs. Alternatively, the association priority classes are assigned by the STAs and indicated to the AP or the WiFi network. The association priority class is determined for a STA according to traffic type, device type, subscriber type, or a random number generator.
Abstract:
Embodiments are provided for identifying transitory WiFi users and providing a differential treatment of such users in terms of delaying associating steps between user stations (STAs) and an access point (AP). A transitory user refers to a user or user device that connects to a WiFi AP but does not run applications that require association or assigning IP addresses, such as short-term or temporary connected WiFi users that are on the move. In an embodiment, a STA connects to an AP. Upon the STA indicating its transitory behavior to the AP or the AP detecting criteria of transitory behavior of the STA, the STA obtains a delay time value from the AP. The STA then delays sending an association request to the AP, or alternatively, the AP delays handling the association request from the STA in accordance with the delay time value.
Abstract:
A method for transmitting to an access point includes receiving a selection condition and a selection contention period from the access point, and comparing the selection condition to a selection parameter. The method also includes contending for use of a transmission medium during the selection contention period if the selection parameter meets the selection condition.
Abstract:
A method for transmitting to an access point includes receiving a selection condition and a selection contention period from the access point, and comparing the selection condition to a selection parameter. The method also includes contending for use of a transmission medium during the selection contention period if the selection parameter meets the selection condition.
Abstract:
Wireless fidelity (Wi-Fi) access points (APs) can advertise their support of both OMA-DM and SOAP-XML protocols by including protocol capability information in a broadcast or probe response message. The protocol capability information can include an OSU method list subfield that indicates that the Wi-Fi AP supports both OMA-DM and SOAP-XML protocols. The broadcast message may be an Access Network Query Protocol (ANQP) message, a beacon message, or some other generic advertisement services (GAS) message. Wi-Fi APs can also specify which WLAN type is preferred by a network operator by including a WLAN access type indication in a broadcast or probe response message. The WLAN access type indication may specify that a network operator prefers a passpoint, non-passpoint, vendor specific WLAN. The WLAN access type indication may be included in an access network discovery and selection function (ANDSF) management object (MO).