Abstract:
A thermal actuator is provided and includes an expansion material disposed and configured to move a movable element from a first movable element position toward a second movable element position in accordance with an expansion condition of the expansion material. The expansion material includes an inorganic salt mixture or a metal oxide mixture.
Abstract:
A hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines an interior space. The outer surface defines a pressure side surface and a suction side surface. The pressure and suction side surfaces are joined together at a leading edge and at a trailing edge. A first cooling passage is formed in the suction side surface of the substrate. It is coupled in flow communication to the interior space. A second cooling passage, separate from the first cooling passage, is formed in the pressure side surface. The second cooling passage is coupled in flow communication to the interior space. A cover is disposed over at least a portion of the first and second cooling passages. The interior space channels a cooling fluid to the first and second cooling passages, which channel the cooling fluid therethrough to remove heat from the component.
Abstract:
A method of manufacturing a component and a method of thermal management are provided. The methods include forming at least one portion of the component, printing a cooling member of the component and attaching the at least one portion to the cooling member of the component. The cooling member includes at least one cooling feature. The at least one cooling feature includes at least one cooling channel adjacent to a surface of the component, wherein printing allows for near-net shape geometry of the cooling member with the at least one cooling channel being located within a range of about 127 (0.005 inches) to about 762 micrometers (0.030 inches) from the surface of the component. The method of thermal management also includes transporting a fluid through at least one fluid pathway defined by the at least one cooling channel within the component to cool the component.
Abstract:
A combustor for a gas turbine, including: a combustor chamber; a casing enclosing the combustor chamber and defining an area therebetween for passing compressor discharge air into the combustor chamber for use in combustion; and at least one passive bypass valve for selectively extracting a portion of the compressor discharge air from the area between the combustor chamber and the casing to adjust a temperature in the combustor.
Abstract:
A system according to various embodiments includes: a cooling network within a turbine component, the cooling network including at least one passageway fluidly connected with a surface of the turbine component; a cooling fluid source for providing a cooling fluid to the cooling network; and a temperature-actuated flow modulating device fluidly connected with the cooling fluid source and the cooling network, the temperature-actuated flow modulating device configured to: detect an ambient air temperature proximate the turbine component; and control a flow of the cooling fluid to the cooling network based upon the detected ambient air temperature.
Abstract:
A hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines an interior space. The outer surface defines a pressure side surface and a suction side surface. The pressure and suction side surfaces are joined together at a leading edge and at a trailing edge. A first cooling passage is formed in the suction side surface of the substrate. It is coupled in flow communication to the interior space. A second cooling passage, separate from the first cooling passage, is formed in the pressure side surface. The second cooling passage is coupled in flow communication to the interior space. A cover is disposed over at least a portion of the first and second cooling passages. The interior space channels a cooling fluid to the first and second cooling passages, which channel the cooling fluid therethrough to remove heat from the component.
Abstract:
A cooling system for a hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines at least one interior space. A passage is formed in the substrate between the outer surface and the inner surface. An access passage is formed in the substrate and extends from the outer surface to the inner space. The access passage is formed at a first acute angle to the passage and includes a particle collection chamber. The access passage is configured to channel a cooling fluid to the passage. Furthermore, the passage is configured to channel the cooling fluid therethrough to cool the substrate.
Abstract:
A system according to various embodiments includes: a cooling network within a turbine component, the cooling network including at least one passageway fluidly connected with a surface of the turbine component; a cooling fluid source for providing a cooling fluid to the cooling network; and a temperature-actuated flow modulating device fluidly connected with the cooling fluid source and the cooling network, the temperature-actuated flow modulating device configured to: detect an ambient air temperature proximate the turbine component; and control a flow of the cooling fluid to the cooling network based upon the detected ambient air temperature.
Abstract:
A hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface of the substrate defines at least one interior space. At least a portion of the outer surface of the substrate includes a recess formed therein. The recess includes a bottom surface and a groove extending at least partially along the bottom surface of the recess. A cover is disposed within the recess and covers at least a portion of the groove. The groove is configured to channel a cooling fluid therethrough to cool the cover.
Abstract:
A component for a turbine engine includes a substrate that includes a first surface, and an insert coupled to the substrate proximate the substrate first surface. The component also includes a channel. The channel is defined by a first channel wall formed in the substrate and a second channel wall formed by at least one coating disposed on the substrate first surface. The component further includes an inlet opening defined in flow communication with the channel. The inlet opening is defined by a first inlet wall formed in the substrate and a second inlet wall defined by the insert.