Abstract:
A method for generating a positron emission tomography (PET) attenuation correction map. The method includes obtaining a magnetic resonance (MR) image dataset of a subject of interest, obtaining a positron emission tomography (PET) emission dataset of the subject of interest, segmenting the MR image dataset to identify at least one object of interest, determining a volume of the object of interest, and generating a PET attenuation correction map using the determined volume. A medical imaging system and a non-transitory computer readable medium are also described herein.
Abstract:
A method for generating a positron emission tomography (PET) attenuation correction map. The method includes obtaining a magnetic resonance (MR) image dataset of a subject of interest, obtaining a positron emission tomography (PET) emission dataset of the subject of interest, segmenting the MR image dataset to identify at least one object of interest, determining a volume of the object of interest, and generating a PET attenuation correction map using the determined volume. A medical imaging system and a non-transitory computer readable medium are also described herein
Abstract:
The subject matter discussed herein relates to systems and methods for generating a clinical outcome based on creating a task-specific model associated with processing raw image(s). In one such example, input raw data is acquired using an imaging system, a selection input corresponding to a clinical task is received, and a task-specific model corresponding to the clinical task is retrieved. Using the task-specific model, the raw data is mapped onto an application specific manifold. Based on the mapping of the raw data onto the application specific manifold the clinical outcome is generated, and subsequently providing the clinical outcome for review.
Abstract:
The present disclosure relates to use of a workflow for automatic prescription of different radiological imaging scan planes across different anatomies and modalities. The automated prescription of such imaging scan planes helps ensure contiguous visualization of the different landmark structures. Unlike prior approaches, the disclosed technique determines the necessary planes using the localizer images itself and does not explicitly segment or delineate the landmark structures to perform plane prescription.
Abstract:
A method for synchronization of a longitudinal data set from a subject includes receiving a first ensemble registration estimate having a first reference image corresponding to a first image ensemble and receiving a second image ensemble different from the first image ensemble. The method includes determining a second reference image based on the second image ensemble and the first reference image. Further, the method includes determining a second ensemble registration estimate based on the first ensemble registration estimate, the second reference image, the first image ensemble and the second image ensemble using an optimization technique. The method further includes generating a synchronized image ensemble corresponding to the first image ensemble and the second image ensemble based on the second ensemble registration estimate. The method also includes determining a medical condition of the subject by a medical practitioner based on the synchronized image ensemble.
Abstract:
A method for synchronization of a longitudinal data set from a subject includes receiving a first ensemble registration estimate having a first reference image corresponding to a first image ensemble and receiving a second image ensemble different from the first image ensemble. The method includes determining a second reference image based on the second image ensemble and the first reference image. Further, the method includes determining a second ensemble registration estimate based on the first ensemble registration estimate, the second reference image, the first image ensemble and the second image ensemble using an optimization technique. The method further includes generating a synchronized image ensemble corresponding to the first image ensemble and the second image ensemble based on the second ensemble registration estimate. The method also includes determining a medical condition of the subject by a medical practitioner based on the synchronized image ensemble.
Abstract:
Aspects of the invention relate to generating an emission activity image as well as an emission attenuation map using an iterative updation based on both the raw emission projection data and the raw radiography projection data, and an optimization function. The outputs include an optimized emission activity image, and at least one of an optimized emission attenuation map or an optimized radiography image. In some aspects an attenuated corrected emission activity image is obtained using the optimized emission activity image, and the optimized emission attenuation map.
Abstract:
Exemplary embodiments of the present disclosure are directed to scheduling positron emission tomography (PET) scans for a combined PET-MRI scanner based on an acquisition of MR scout images of a subject. An anatomy and orientation of the subject can be determined based on the MR scout images and the schedule for acquiring PET scans of the subject can be determined from the anatomy of the subject. The schedule generated using exemplary embodiments of the present disclosure can specify a sequence of bed positions, scan durations at each bed position, and whether respiratory gating will be used at one or more of the bed positions.
Abstract:
Systems and methods of classifying component tissues of magnetic resonance images, where the method includes performing a proton density weighted, short echo-time magnetic resonance imaging measurement over a first volume field-of-view region of interest (ROI), repeating a series refining the first volume field-of-view ROI into a plurality of subsequent smaller ROI volumes having respective smaller resolutions, reconstructing a complex image from the plurality of magnetic resonance imaging measurements, performing a bias correction on at least one of the plurality of subsequent smaller ROI volumes, and classifying the ROI volumes by tissue type based on the bias-corrected image signal, wherein at least one tissue type is bone. A non-transitory medium containing processor instructions and a system are disclosed.