Abstract:
Systems and methods are provided for powering a pipeline inspection system. The system includes an induction generator extending along a radially curved plane. The induction generator having an outer surface and an opposing inner surface. The outer surface is positioned proximate to an inner surface area of a pipeline. The system also includes a controller circuit configured to generate a plurality of periodic waveform signals. The plurality of periodic waveform signals are received by the induction generator. The induction generator is configured to generate active power that charges an electric power source based on the plurality of periodic waveform signals and the inner surface area.
Abstract:
A component that includes a longitudinal axle, having a multiple keybars that extend outward from a surface of the axle, such that each of the keybars are disposed axially along and circumferentially around the axle. Also the axis of the keybars is parallel to the axle, such that a profile of all midpoints of the keybars is helicoidal around the axle, also the helicoidal profile is such that they make up one or more helicoidal paths. The profile may be herringbone skewed. The component may be part of a rotor assembly that is part of an electric machine such as an interior permanent magnet (IPM) or Synchronous Reluctance motor.
Abstract:
Systems and methods are provided for powering a pipeline inspection system. The system includes an induction generator extending along a radially curved plane. The induction generator having an outer surface and an opposing inner surface. The outer surface is positioned proximate to an inner surface area of a pipeline. The system also includes a controller circuit configured to generate a plurality of periodic waveform signals. The plurality of periodic waveform signals are received by the induction generator. The induction generator is configured to generate active power that charges an electric power source based on the plurality of periodic waveform signals and the inner surface area.
Abstract:
A magnetic component having a unitary structure, a transverse flux electric machine having the magnetic component, and a method of making the magnetic component are disclosed. The unitary structure of the magnetic component includes a magnetic region and a non-magnetic region. The magnetic region includes a magnetic phase and an electrically insulating phase. The non-magnetic region includes a non-magnetic phase. The magnetic phase includes a metallic material and the non-magnetic phase includes a nitrogenated metallic material formed by a controlled nitrogenation of the metallic material.
Abstract:
Systems and methods are provided for powering a pipeline inspection system. The system includes an induction generator extending along a radially curved plane. The induction generator having an outer surface and an opposing inner surface. The outer surface is positioned proximate to an inner surface area of a pipeline. The system also includes a controller circuit configured to generate a plurality of periodic waveform signals. The plurality of periodic waveform signals are received by the induction generator. The induction generator is configured to generate active power that charges an electric power source based on the plurality of periodic waveform signals and the inner surface area.
Abstract:
A magnetic component having a unitary structure, a transverse flux electric machine having the magnetic component, and a method of making the magnetic component are disclosed. The unitary structure of the magnetic component includes a magnetic region and a non-magnetic region. The magnetic region includes a magnetic phase and an electrically insulating phase. The non-magnetic region includes a non-magnetic phase. The magnetic phase includes a metallic material and the non-magnetic phase includes a nitrogenated metallic material formed by a controlled nitrogenation of the metallic material.
Abstract:
A core of a transverse flux machine a stator pole. The stator pole includes a plurality of laminations, where laminations of the plurality of laminations are in a stacked configuration. Further, each of the plurality of laminations includes at least one of a magnetic region and a non-magnetic region, where individual shapes of magnetic regions of the plurality of laminations are such that the magnetic regions of the plurality of laminations at least a portion of a three-dimensional magnetic circuit.
Abstract:
An assembly includes multiple adjoined rotor sections each having multiple poles and multiple void rows therethrough that are radially distributed in each of the poles. The rotor sections are skewed in a circumferential direction. The assembly also has multiple conductive rings that substantially surround one of the void rows. A method of assembly and electric machines and vehicles using the assembly are also disclosed. Aspects reduce torque ripple in electric machines and allow for encoderless/sensorless operation in an electric machine using the rotor assembly. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
Abstract:
A component includes magnet elements adjoined to each other to form an arced segmented magnet section that is configured to fit in an a curved rotor slot gap of an electric machine. An electric machine that employs the component and method of assembly of the component are also disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
Abstract:
A power generation system includes a conducting tube and a generating unit configured to move linearly over a conductive surface of the conducting tube. Further, the generating unit includes a magnetic rotor configured to create a first magnetic field proximate the conductive surface and a stator disposed concentric with and radially inside the magnetic rotor, and including electrical coils. The magnetic rotor rotates about the stator to induce a voltage in the electrical coils when the generating unit moves linearly over the conductive surface of the conducting tube.