Abstract:
The invention relates to a toroidal electric generator (100) comprising a stator (20), which includes a tubular body (21) supporting a plurality of windings (24), and a rotor (30) rotatable within the stator (20) and comprising a support element (31) and a plurality of hydraulic blades (32), each provided with a respective magnet (34) and mounted on the support element (31) integral to it. The toroidal electric generator (100) further comprises an external casing (40) and a plurality of separating elements (51, 52), each separating element being arranged between a respective pair of adjacent windings (24) of the plurality of windings (24) of the stator (20).
Abstract:
The disclosure relates to an electric machine having a rotor including a set of permanent magnets and a stator including a stator strip made of a soft ferromagnetic material, the strip supporting a coil body having a single discontinuity, the coil body supporting a plurality of wire coils so as to form a polyphase coil stator assembly of the toroidal type, wherein the strip has a single discontinuity and has at least one partial cut at regular intervals between two consecutive wire coils.
Abstract:
Disclosed are various embodiments for Torque Tunnel Halbach Array electric machines having a rotor comprising a plurality of rotor assemblies configured to form a magnetic torque tunnel having at least a first magnetic pole tunnel segment and a second magnetic pole tunnel segment, each of the rotor assemblies having a plurality of flux shaping Halbach Arrays configured to focus the Flux Density Distribution in the magnetic torque tunnel and a stator having a plurality of coils configured to form a coil winding assembly, the coil winding assembly positioned within the magnetic torque tunnel, such that at least one of the plurality of coils is surrounded by the first magnetic pole tunnel segment or the second magnetic pole tunnel segment, alternatively the rotor may be the coil winding assembly and the stator may be the magnetic torque tunnel.
Abstract:
An electrical machine, which may be a motor and/or a generator has a rotor mounted to rotate about an axis. A plurality of magnetic poles are spaced circumferentially around the rotor in the bore. The rotor comprises a shell shaped to provide a toroidal bore centered on the axis. A slit extends circumferentially around the rotor. The slit penetrates through the shell into the bore. The electrical machine also includes a stator that is supported in the bore by one or more supports extending through the slit of the rotor. The stator carries plural windings that are spaced apart around the bore.
Abstract:
Disclosed are various embodiments for Torque Tunnel Halbach Array electric machines having a rotor comprising a plurality of rotor assemblies configured to form a magnetic torque tunnel having at least a first magnetic pole tunnel segment and a second magnetic pole tunnel segment, each of the rotor assemblies having a plurality of flux shaping Halbach Arrays configured to focus the Flux Density Distribution in the magnetic torque tunnel and a stator having a plurality of coils configured to form a coil winding assembly, the coil winding assembly positioned within the magnetic torque tunnel, such that at least one of the plurality of coils is surrounded by the first magnetic pole tunnel segment or the second magnetic pole tunnel segment, alternatively the rotor may be the coil winding assembly and the stator may be the magnetic torque tunnel.
Abstract:
An electric machine includes a stator and a rotor. The stator is disposed near to the rotor and has at least one first stator unit and at least one second stator unit. The first stator unit has a first tooth and a second tooth, and the second stator unit has a third tooth and a fourth tooth. The rotor has a rotating direction or a moving direction with respect to the stator. The first tooth and the third tooth are adjacently disposed to each other along the rotating direction or the moving direction. The protruding directions of the first tooth and the third tooth respectively form a first angle and a third angle with the radial direction of the rotor, and the first angle and the third angle are different.
Abstract:
An electric machine comprise a first carrier having an array of electromagnetic elements and a second carrier having electromagnetic elements defining magnetic poles, the second carrier being arranged to move relative to the first carrier. An airgap is provided between the first carrier and the second carrier. The electromagnetic elements of the first carrier include posts, with slots between the posts, one or more electric conductors in each slot, the posts of the first carrier having a post height in mm. The first carrier and the second carrier together define a size of the electric machine. The magnetic poles having a pole pitch in mm. The size of the motor, pole pitch and post height are selected to fall within a region in a space defined by size, pole pitch and post height that provides a benefit in terms of force or torque per weight per excitation level.
Abstract:
The invention relates to an electric motor having a rotor and a coiled stator, the rotor including a shaft and two disks that are rotatably fixed to the shaft and provided with permanent magnets, an outer portion of the stator extending from each disk axially parallel to a rotational axis of the rotor and radially beyond same, from the axis. The stator includes a plurality of disjointed bars made of a magnetically conductive material, certain parts of which form the outer portion of the stator. The stator also has a carrier structure holding the bars such that they are fixed in relation to each other, the carrier structure being mounted in such a way that it can rotate on the shaft, axially outside the two disks. The outer portion of the stator extends parallel to the rotational axis, axially outside the disks of the rotor, up to the carrier structure.
Abstract:
A transversal flux machine having a stator and an external rotor disposed about the stator, the stator comprising two axial end faces, having an inner core of the stator, having a cooling path disposed radially within the inner core, wherein a cooling path either a) protrudes out of the transversal flux machine on the axial end face of the stator, said transversal flux machine facing away from an inlet side, or b) the cooling path protrudes out of the transversal flux machine on the axial end face of the stator, said transversal flux machine facing away from the inlet side, the cooling path running between the inlet and the outlet in an intermediate space between the stator and the external rotor of the stator facing the inlet side, the cooling path between the inlet and the outlet running in an intermediate space between the stator and the external rotor.
Abstract:
A basic electromagnetic component includes an electromagnetic circuit, which is composed of magnetic core and of coil and of one or more optional parts; of permanent magnet and/or of control unit. In the electromagnetic power unit motors, generators or linear motors implemented with basic electromagnetic components are connectable for different current and voltage values by changing the connections of electromagnetic components. An electronic switching module includes internal electronic or electromechanical switches and/or inverters which is composed of control unit to switch and invert polarities of sections of phase coils of an electric motor or generator during its operation and of at least two phase coil sets connected in series or parallel, or in combinations of these, and switching connections between phase coils or phase coil sets in series or in parallel to adjust power and speed in steps by using electric gears.