Abstract:
A method and associated system for operating a power generation to supply real and reactive power to a grid includes determining a total reactive power demand made on the system during a first, stable grid state. A first reactive power portion of the reactive power demand is supplied by a generator, and a second reactive power portion is supplied by a reactive power compensation device, wherein the second reactive power portion may be greater than the first reactive power portion. Upon detection of a grid fault, the first reactive power portion is increased and the second reactive power portion is decreased.
Abstract:
A method of estimating a state of an electric power distribution system that includes a plurality of nodes and at least one electrical monitoring sensor includes measuring electric current flow (I), real power flow (P), and reactive power flow (Q). The method also includes determining estimated real power load values (PLis) and reactive power load values (QLis) and determining a plurality of estimated load current values (ILis) based on the PLis and the QLis. The method further includes measuring a value of voltage (VM) for at least one node and determining a voltage estimate (Vi) for the node. The method also includes comparing the Vi with the VM, thereby determining a difference value between the Vi and the VM. The method further includes determining that the difference value exceeds a threshold and adjusting the PLis and the QLis to match the Vi and the VM.
Abstract:
A method for controlling a power output of a power generating unit includes receiving at least two measurement data sets from a location of integration of a power generating unit to an electrical grid. Each measurement data set includes a plurality of electrical parameters. The method further includes generating a grid model of the electrical grid based on the at least two measurement data sets. The grid model is characterized by an equivalent grid voltage and an equivalent grid impedance. The method further includes computing a strength value of the electrical grid based on the grid model, using the at least two measurement data sets. The method also includes controlling the power output of a power generating unit based on the strength value of the electrical grid.
Abstract:
A method for operating a wind turbine power system that supplies real and reactive power to a grid includes operating a generator of the wind turbine power system up to a first speed limit. The method also includes monitoring a wind speed at the wind turbine power system. When the wind speed drops below a predetermined threshold, the method includes reducing the first speed limit of the generator to a reduced speed limit of the generator. Further, the method includes operating the generator at the reduced speed limit for as long as the wind speed remains below the predetermined threshold so as to optimize a tip-speed-ratio of the wind turbine power system during low wind speeds, thereby increasing power production of the wind turbine power system at low wind speeds.
Abstract:
A method for operating a power generation system that supplies real and reactive power to a grid includes receiving a reactive power demand made on the power generation system at an operating state of the power generation system and a grid state. Further, the method includes decoupling reactive power control and voltage control between a generator and a reactive power compensation device so as to reduce an oscillatory response of a reactive power output from the reactive power compensation device and the generator. Moreover, the method includes operating, via a device controller, the reactive power compensation device in a reactive power control mode to generate at least a portion of the reactive power demand.
Abstract:
A method for estimating grid strength of a power grid connected to a renewable energy farm having a plurality of renewable energy power systems includes measuring, at least, a voltage, an active power, and a reactive power at a point of interconnection of the renewable energy farm to the power grid. The method also includes determining a sensitivity of the voltage to at least one of the active power or the reactive power at the point of interconnection. Further, the method includes determining the grid strength of the power grid as a function of the sensitivity of the voltage to at least one of the active power or the reactive power at the point of interconnection. In addition, the method includes dynamically determining at least one of an active power command or a reactive power command for the renewable energy farm at the point of interconnection based on the grid strength. Moreover, the method includes distributing at least one of the active power command or the reactive power command to individual controllers of the plurality of renewable energy power systems and a farm-level controller of the renewable energy farm.
Abstract:
A method and associated system for operating a power generation system to provide real and reactive power to a load includes, with a power converter having switching elements, receiving power from a generator and generating the reactive power within an operating range of generator rotor speed. As the generator rotor speed changes and approaches synchronous speed, a control command is generated to decrease a switching frequency of the switching elements in the power converter from a first switching frequency to a second switching frequency, wherein the reactive power output of the power converter is maintained or increased at the second switching frequency.