Abstract:
A direct metal laser melting (DMLM) system includes a laser device configured to generate a melt pool in a powder bed based on a build parameter. In addition, the DMLM system includes a confocal optical system directed at the melt pool and configured to receive an optical signal emitted by the melt pool. The DMLM system further includes an optical sensor operatively coupled to the confocal optical system that is configured to receive the optical signal and to generate an electrical signal in response to the optical signal. A computing device is configured to receive the electrical signal from the optical sensor and to generate a control signal in response. The control signal is configured to modify the build parameter of the direct metal laser melting system in real-time to adjust at least one of a melt pool size and a melt pool temperature to achieve a desired physical property of the component.
Abstract:
A method that includes additively manufacturing with an additive manufacturing (AM) system a sub-component that has a locator element. Using a control system of the AM system for positioning a first location of the locator element. Selectively placing a portion of another sub-component adjacent to the locator element, based on the positioning. Then attaching the second sub-component to the first sub-component in a region, wherein the region is based on the positioning knowledge from the control system so as to make a component. A component that comprises a first sub-component that has an AM locator element; and a second sub-component attached to the first sub-component, wherein the locator element is attached to the second sub-component within the same additive manufacturing build chamber as the first sub-component.
Abstract:
A method of creating an article of manufacture is provided, which includes directing multiple laser beams to a single galvanometer; and dynamically repositioning the multiple laser beams in counterpart paths using the single galvanometer to shine the multiple laser beams on and melt a first powder material and, upon solidification of the melted first powder material, forming a first series of duplicate three dimensional structures, where each of the multiple laser beams is used to form at least one of the first series of duplicate three dimensional structures.
Abstract:
A method that includes additively manufacturing with an additive manufacturing (AM) system a sub-component that has a locator element. Using a control system of the AM system for positioning a first location of the locator element. Selectively placing a portion of another sub-component adjacent to the locator element, based on the positioning. Then attaching the second sub-component to the first sub-component in a region, wherein the region is based on the positioning knowledge from the control system so as to make a component. A component that comprises a first sub-component that has an AM locator element; and a second sub-component attached to the first sub-component, wherein the locator element is attached to the second sub-component within the same additive manufacturing build chamber as the first sub-component.
Abstract:
A system for fabricating a component includes an additive manufacturing device and a computing device. The additive manufacturing device is configured to fabricate a first component by sequentially forming a plurality of superposed layers based upon a nominal digital representation of a second component, which includes a plurality of nominal digital two-dimensional cross-sections, each corresponding to a layer of the first component. The computing device includes a processor, wherein for an ith layer of the first component, the processor is configured to (a) generate a cumulative compensation transformation; (b) apply the cumulative compensation transformation to the nominal digital two-dimensional cross-section corresponding to the ith layer to create an intermediate digital two-dimensional cross-section corresponding to the ith layer; (c) determine a local compensation transformation; and (d) apply the local compensation transformation to the intermediate digital two-dimensional cross-section corresponding to the ith layer.
Abstract:
A method for assessment of operational performance of a 3D manufacturing apparatus is provided. Images are obtained, in real-time during a 3D polymer printing build process in which at least one structure is built by the 3D manufacturing apparatus, the images being of an area of a build platform on which the at least one structure is built. The obtained images are evaluating, and it is determined, based on the evaluating, whether an operational flaw with the 3D manufacturing apparatus has occurred. Operational flaws include errors in the operation of the 3D manufacturing apparatus and/or component thereof, as evidenced by, for instance, distortions or other errors in the structure(s) being built and/or materials being used.
Abstract:
Systems, apparatus and methods provide a visual representation to users of data collected from a three dimensional manufacturing process, such as an additive manufacturing (AM) process. In an embodiment, a user device receives process data associated with a three dimensional manufacturing process, transforms the process data into visualization data compatible with a computer-aided design specification, receives a Boolean query, and then renders, in response to the Boolean query, a visual depiction on a display screen of at least one aspect of the three dimensional manufacturing process and/or the three dimensional manufacturing apparatus and/or a object being manufactured.
Abstract:
A method of monitoring a surface temperature of a hot gas path component includes directing an excitation beam having an excitation wavelength at a layer of a sensor material composition deposited on a hot gas path component to induce a fluorescent radiation. The method includes measuring fluorescent radiation emitted by the sensor material composition. The fluorescent radiation includes at least a first intensity at a first wavelength and a second intensity at a second wavelength. The surface temperature of the hot gas path component is determined based on a ratio of the first intensity at the first wavelength and the second intensity at the second wavelength of the fluorescent radiation emitted by the sensor material composition.
Abstract:
A direct metal laser melting (DMLM) system for enhancing build parameters of a DMLM component includes a confocal optical system configured to measure at least one of a melt pool size and a melt pool temperature. The DMLM system further includes a computing device configured to receive at least one of the melt pool size or the melt pool temperature from the confocal optical system. Furthermore, the DMLM system includes a controller configured to control the operation of a laser device based on at least one build parameter.
Abstract:
A system for fabricating a component includes an additive manufacturing device and a computing device. The additive manufacturing device is configured to fabricate a first component by sequentially forming a plurality of superposed layers based upon a nominal digital representation of a second component, which includes a plurality of nominal digital two-dimensional cross-sections, each corresponding to a layer of the first component. The computing device includes a processor, wherein for an ith layer of the first component, the processor is configured to (a) generate a cumulative compensation transformation; (b) apply the cumulative compensation transformation to the nominal digital two-dimensional cross-section corresponding to the ith layer to create an intermediate digital two-dimensional cross-section corresponding to the ith layer; (c) determine a local compensation transformation; and (d) apply the local compensation transformation to the intermediate digital two-dimensional cross-section corresponding to the ith layer.