Abstract:
A device for cooling an electronic component includes a substrate having a component mounting surface and a fluid flow surface recessed relative to the component mounting surface. The device also includes an inlet orifice positioned proximate a first end of the fluid flow surface and an outlet orifice positioned proximate a second end of the fluid flow surface. A pattern of surface features is arranged on the fluid flow surface. The pattern of surface features is configured to entrain a coolant flowing across the fluid flow surface and redirect the coolant upward and away from the fluid flow surface.
Abstract:
An electrical system includes a power electronics system and a bus bar coupled to the power electronic system. The power electronics system includes a switching device configured to selectively connect and disconnect. The bus bar includes a first conductive layer and a second conductive layer. The first conductive layer is disposed directly adjacent a first insulation layer, wherein the first conductive layer is configured to conduct a first polarity of electrical power to, from, or both the power electronics system. The second conductive layer is disposed directly adjacent the first insulation layer, and is configured to conduct a second polarity of electrical power opposite the first polarity to, from, or both the power electronics system. The first conductive layer comprises a first thickness half a second thickness of the second conductive layer.
Abstract:
Power converters for use in wind turbine systems are included. For instance, a wind turbine system can include a wind driven doubly fed induction generator having a stator and a rotor. The stator is configured to provide a medium voltage alternating current power on a stator bus of the wind turbine system. The wind turbine system includes a power converter configured to convert a low voltage alternating current power provided by the rotor to a medium voltage multiphase alternating current output power suitable for provision to an electrical grid. The power converter includes a plurality conversion modules. Each conversion module includes a plurality of bridge circuits. Each bridge circuit includes a plurality of silicon carbide switching devices coupled in series. Each conversion module is configured to provide a single phase of the medium voltage multiphase alternating current output power on a line bus of the wind turbine system.
Abstract:
A multi-level DC-DC converter includes an input side to receive a DC power having an input voltage and current, an output side to provide power to a load at a desired output voltage and current, and a plurality of transformer-isolated DC-DC converters connected between the input and output sides, with the transformer-isolated DC-DC converters being connected in series on one side and connected in parallel on another side. Each of the transformer isolated DC-DC converters further includes a power transformer having a primary winding and a secondary winding, and a plurality of switching devices each selectively operable in one of an On state and an Off state. Operating the switching devices in a complementary On state and Off state alternately at a controlled switching frequency provides for engaging the transformer isolated DC-DC converter and operating the switching devices in a simultaneously On state bypasses the transformer isolated DC-DC converter.
Abstract:
A multi-level DC-DC converter includes an input side to receive a DC power having an input voltage and current, an output side to provide power to a load at a desired output voltage and current, and a plurality of tranformer-isolated DC-DC converters connected between the input and output sides, with the tranformer-isolated DC-DC converters being connected in series on one side and connected in parallel on another side. Each of the tranformer isolated DC-DC converters further includes a power transformer having a primary winding and a secondary winding, and a plurality of switching devices each selectively operable in one of an On state and an Off state. Operating the switching devices in a complementary On state and Off state alternately at a controlled switching frequency provides for engaging the tranformer isolated DC-DC converter and operating the switching devices in a simultaneously On state bypasses the transformer isolated DC-DC converter.
Abstract:
A power converter is provided. In one aspect, the power converter has a first inverter and a second inverter electrically coupled with one another and with a power bus. First switches of the first inverter are arranged symmetrically with second switches of the second inverter so that, when switched in a pulse width modulated switching scheme, the first switches generate a first common mode signal and the second switches generate a second common mode signal that is one hundred eighty degrees out of phase with the first common mode signal. In another aspect, the power converter includes a buck stage having one or more pairs of symmetrically arranged buck switches that can be controlled to reduce or eliminate common mode electromagnetic interference in the buck stage. The power converter can also include one or more pairs of symmetrically arranged inductors.
Abstract:
An electric power system for a vehicle includes at least one electric machine, one or more power rectifiers, and a plurality of DC channels. The at least one electric machine includes a plurality of tooth-wound multi-phase windings that are substantially magnetically decoupled, and the at least one electric machine is mechanically balanced even if one of the plurality of windings is de-energized. The one or more power rectifiers are configured to produce rectified power from the power generated by the at least one electric machine. The plurality of DC channels are formed after the at least one power rectifier and are configured to provide DC power to one or more loads within a vehicle.
Abstract:
A heat sink for cooling an electronic component includes a substrate comprising an electrically non-conductive material and an inlet port and an outlet port extending outward from the substrate. The inlet and outlet ports are fluidically coupled to a fluid flow surface of the heat sink by passages that extend through a portion of the substrate. The heat sink also includes a shield comprising an electrically conductive material. The shield is disposed atop or within the substrate and is configured to suppress electromagnetic interference generated by an electronic component coupled to the heat sink.
Abstract:
A multi-level DC-DC converter includes an input side to receive a DC power having an input voltage and current, an output side to provide power to a load at a desired output voltage and current, and a plurality of tranformer-isolated DC-DC converters connected between the input and output sides, with the tranformer-isolated DC-DC converters being connected in series on one side and connected in parallel on another side. Each of the tranformer isolated DC-DC converters further includes a power transformer having a primary winding and a secondary winding, and a plurality of switching devices each selectively operable in one of an On state and an Off state. Operating the switching devices in a complementary On state and Off state alternately at a controlled switching frequency provides for engaging the tranformer isolated DC-DC converter and operating the switching devices in a simultaneously On state bypasses the transformer isolated DC-DC converter.
Abstract:
A high voltage direct current (HVDC) converter system includes a line commutated converter (LCC) configured to convert a plurality of AC voltages and currents to a regulated DC voltage of one of positive and negative polarity and a DC current transmitted in only one direction. The HVDC converter system also includes a buck converter configured to convert a plurality of AC voltages and currents to a regulated DC voltage of one of positive and negative polarity and a DC current transmitted in one of two directions. The LCC and the buck converter are coupled in parallel to an AC conduit and are coupled in series to a DC conduit. The HVDC converter system further includes a filtering device coupled in parallel to the buck converter through the AC conduit. The filtering device is configured to inject AC current having at least one harmonic frequency into the AC conduit.