Abstract:
The present application provides a heat exchanger for exchanging heat between two fluid flows in cross-flow arrangement. The heat exchanger includes at least one heat exchanging module including a first heat exchanging component and a second heat exchanging component. The first heat exchanging component including a fluid inlet header, a fluid outlet header, and at least one heat exchanging passageway defining a first tube-side fluid flow path of a first portion of a fluid in a first direction. The second heat exchanging component including a fluid inlet header, a fluid outlet header, and at least one heat exchanging passageway defining a second tube-side fluid flow path in a second direction for an additional portion of the fluid, wherein the first direction is opposed to the second direction. The opposing first tube-side fluid flow path and the second tube-side fluid flow path equalizing the temperature distribution over the cross-section of a cross-flow fluid exiting the module.
Abstract:
A nozzle assembly of a turbocharger includes a nozzle and a ring-shaped body. The nozzle has flow passages extending through the nozzle and configured to direct air received from a volute housing of the turbocharger through the nozzle to turbine blades of the turbocharger. The ring-shaped body is coupled with the nozzle and is configured to rotate around the nozzle. The ring-shaped body includes blocking segments that block the flow of the air and openings between the blocking segments that permit the air to flow through the ring-shaped body. The ring-shaped body is configured to rotate relative to the nozzle to change how many of the flow passages in the nozzle are blocked by the blocking segments of the ring-shaped body.
Abstract:
An integrated heat recovery and cooling cycle system for use with a gas turbine engine, including a heat-to-power portion and an inlet cooling portion. The heat-to-power portion including a two-stage intercooled pump/compressor, a low-temperature heat source configured to receive a first portion of a flow of working fluid, one or more recuperators configured in parallel with the intercooler to receive a second portion of the flow of working fluid. The inlet cooling cycle including a chiller expander, a chiller compressor coupled to the chiller expander, a motor coupled to the chiller compressor and an inlet air heat exchanger in fluid communication with the chiller expander and the chiller compressor. The inlet cooling portion configured to receive a portion of the flow of working fluid. The system further including a working fluid condenser and an accumulator in fluid communication with the heat-to-power portion and the inlet cooling portion.
Abstract:
A combined cycle power plant is provided. The combined cycle power plant includes a gas turbine and a heat recovery steam generator disposed in fluid communication with the gas turbine and including one or more steam heater units. Additionally, the combined cycle power plant includes a recuperator unit integrated with the heat recovery steam generator and configured to use gas turbine exhaust from the gas turbine to preheat compressor discharge air from the compressor and supply the preheated compressor discharge air to the combustor, where a first subset of the one or more steam heater units is disposed in parallel to the recuperator unit, and where a second subset of the one or more steam heater units is disposed in series with the first subset of the one or more steam heater units and the recuperator unit with respect to a direction of flow of gas turbine exhaust.
Abstract:
Dual-fuel engine system includes cylinders in which the cylinders have an intake valve and an exhaust valve that control a flow of fluid into and out of a combustion chamber of the corresponding cylinder. The intake valve is configured to have an intake valve closure (IVC) timing. The dual-fuel engine system is configured to operate in a single-fuel mode and a dual-fuel mode. The combustion chamber and a piston are designed to provide a compression ratio. The dual-fuel engine system also includes one or more processors that are operably coupled to and configured to control operation of the first fuel injector. The compression ratio and the IVC timing are selected to achieve a target pre-combustion temperature. The target pre-combustion temperature permits the dual-fuel engine system to operate at a high substitution rate in the dual-fuel mode and at a sufficient fuel efficiency in the single-fuel mode.
Abstract:
A system and method for generating electric power using a generator coupled to a turboexpander is disclosed. The system includes one or more thermal pumps configured for heating a fluid to generate a pressurized gas. A portion of the pressurized gas is discharged to a buffer chamber for further utilization in a Rankine system. A further portion of the pressurized gas is expanded in a turboexpander for driving a generator for generating electric power. Optionally, the system includes a pump to pressurize a portion of the fluid depending on the systems operating condition. The system further includes one or more sensors for sensing temperature and pressure and outputs one or more signals representative of the sensed state. The system includes a control unit for receiving the signals and outputs one or more control signals for controlling the flow of gases and liquid in the valves and the check valve.