Abstract:
Magnetic material imaging (MMI) system including first and second sets of field-generating coils. Each of the field-generating coils of the first and second sets has an elongated segment that extends along an imaging axis of the medical imaging system. The imaging axis extends through a region-of-interest (ROI) of an object. The elongated segments of the first set of field-generating coils are positioned opposite the elongated segments of the second set of field-generating coils and the ROI is located between the first and second sets of field-generating coils. The MMI system also includes a coil-control module configured to control a flow of current through the first and second sets of field-generating coils to generate a selection field and to generate a drive field. The selection and drive fields combine to form a movable 1D field free region (FFR) that extends through the ROI.
Abstract:
Exemplary embodiments of the present disclosure are directed to scheduling positron emission tomography (PET) scans for a combined PET-MRI scanner based on an acquisition of MR scout images of a subject. An anatomy and orientation of the subject can be determined based on the MR scout images and the schedule for acquiring PET scans of the subject can be determined from the anatomy of the subject. The schedule generated using exemplary embodiments of the present disclosure can specify a sequence of bed positions, scan durations at each bed position, and whether respiratory gating will be used at one or more of the bed positions.
Abstract:
A system and method is disclosed for tracking a moving object using magnetic resonance imaging. The technique includes acquiring a scout image scan having a number of image frames and extracting non-linear motion parameters from the number of image frames of the scout image scan. The technique includes prospectively shifting slice location using the non-linear motion parameters between slice locations while acquiring a series of MR images. The system and method are particularly useful in tracking coronary artery movement during the cardiac cycle to acquire the non-linear components of coronary artery movement during a diastolic portion of the R-R interval.
Abstract:
The techniques discussed herein relate to a reduced acoustic noise and vibration magnetic resonance imaging (MRI) acquisition. In certain implementations acoustic noise levels for one or more MRI pulse sequences are characterized and modified by limiting the frequencies and amplitudes of the gradient waveforms so as to produce less noise and vibration when the modified waveform is used during an MRI examination. In this manner, relatively low sound pressure levels can be attained.
Abstract:
The present disclosure relates to the use of prior images acquired of the patient and acoustic signature from a vascular region of interest to create a patient-specific model of sound propagation from the vascular region. This model is then used to monitor the progression of disease in the vascular region of interest, using subsequently-acquired acoustic signals. In an alternate embodiment, population-based images and/or population-based acoustic signatures are used to generate predictive data when a priori patient-specific imaging information is not available and this data is used to characterize or categorize at-risk patients suspected of coronary artery disease, but without prior cardiac events.
Abstract:
An imaging device may include a patient bore to house a subject to be imaged, wherein the patient bore includes one or more bore tubes. The imaging device may also include a gradient coil surrounding, at least partially, the patient bore and a radio frequency (RF) shield located outside the one or more bore tubes. Additionally, the imaging device may include an RF coil located within at least one of the bore tubes.
Abstract:
A magnetic resonance (MR) imaging method performed by an MR imaging system includes acquiring MR data in multiple shots and multiple acquisitions (NEX), separately reconstructing the component magnitude and phase of images corresponding to the multiple shots and multiple NEX, removing the respective phase from each of the images, and combining, after removal of the respective phase, the shot images and the NEX images to produce a combined image. The method further includes using the combined image to calculate the full k-space data for each shot and NEX and replacing unacquired k-space data points with calculated k-space data points. The operations are repeated until the combined image reaches a convergence.
Abstract:
The present disclosure describes non-invasive approaches for delineating and characterizing tissue using MR imaging over a range of treatment levels. By way of example, tumor tissue may be distinguished and delineated from other tissue, such as muscle tissue. Further, tumor tissue may be characterized as malignant or benign using such approaches.
Abstract:
Magnetic material imaging (MMI) system including a first array of elongated wire segments that extend substantially parallel to an imaging plane. The imaging plane is configured to extend through a region-of-interest (ROI) of an object. The MMI system also includes a second array of elongated wire segments that extend substantially parallel to the imaging plane. The first and second arrays of wire segments are spaced apart with the imaging plane therebetween. The first and second arrays of wire segments form segment pairs. Each segment pair includes a wire segment of the first array and a wire segment of the second array, wherein the wire segments substantially coincide along a segment plane. The MMI system also includes a phase-control module configured to control a flow of current through the wire segments of the segment pairs to generate and move a one-dimensional field free region (1D FFR) within the imaging plane.
Abstract:
Exemplary embodiments of the present disclosure are directed to scheduling positron emission tomography (PET) scans for a combined PET-MRI scanner based on an acquisition of MR scout images of a subject. An anatomy and orientation of the subject can be determined based on the MR scout images and the schedule for acquiring PET scans of the subject can be determined from the anatomy of the subject. The schedule generated using exemplary embodiments of the present disclosure can specify a sequence of bed positions, scan durations at each bed position, and whether respiratory gating will be used at one or more of the bed positions.