Abstract:
Systems and methods of detecting a fuel leak are provided. A method of detecting a fuel leak within a turbomachine combustor includes a step of monitoring, by a controller, a sensor output from a particulate matter sensor positioned on a component within the combustor. The sensor output includes one of a fault state sensor output or a non-fault state sensor output. The method further includes receiving, with the controller, the fault state sensor output from the particulate matter sensor when a fuel leak is present within the combustor.
Abstract:
A system includes an oxidant compressor and a gas turbine engine turbine, which includes a turbine combustor, a turbine, and an exhaust gas compressor. The turbine combustor includes a plurality of diffusion fuel nozzles, each including a first oxidant conduit configured to inject a first oxidant through a plurality of first oxidant openings configured to impart swirling motion to the first oxidant in a first rotational direction, a first fuel conduit configured to inject a first fuel through a plurality of first fuel openings configured to impart swirling motion to the first fuel in a second rotational direction, and a second oxidant conduit configured to inject a second oxidant through a plurality of second oxidant openings configured to impart swirling motion to the second oxidant in a third rotational direction. The first fuel conduit surrounds the first oxidant conduit and the second oxidant conduit surrounds the first fuel conduit.
Abstract:
A combustor includes an end cap that extends radially across at least a portion of the combustor. The end cap includes an upstream surface axially separated from a downstream surface. A plurality of tubes extend from the upstream surface through the downstream surface of the end cap to provide fluid communication through the end cap. Each tube in a first set of the plurality of tubes has an inlet proximate to the upstream surface and an outlet downstream from the downstream surface. Each outlet has a first portion that extends a different axial distance from the inlet than a second portion.
Abstract:
A system for reducing modal coupling of combustion dynamics includes a plurality of combustors, and at least one fuel injector in each of the plurality of combustors. The system also includes structure for dithering a combustion instability frequency in at least one combustor in the plurality of combustors. A method for reducing modal coupling of combustion dynamics includes flowing a compressed working fluid at a temperature to a plurality of combustors and flowing a fuel to at least one fuel injector in each of the plurality of combustors. The method further includes dithering at least one of the temperature of the compressed working fluid flowing to the plurality of combustors or the fuel flow to the at least one fuel injector in at least one combustor in the plurality of combustors.
Abstract:
Systems and methods of detecting a fuel leak are provided. A method of detecting a fuel leak within a turbomachine combustor includes a step of monitoring, by a controller, a sensor output from a particulate matter sensor positioned on a component within the combustor. The sensor output includes one of a fault state sensor output or a non-fault state sensor output. The method further includes receiving, with the controller, the fault state sensor output from the particulate matter sensor when a fuel leak is present within the combustor.
Abstract:
A method for selectively operating a combustor head end assembly is provided. The combustor head end assembly includes a plurality of bundled tube fuel nozzles. The method includes opening a first fuel circuit of a plurality of fuel circuits. The first fuel circuit of the plurality of fuel circuits is fluidly coupled to a first nozzle group, and the first nozzle group includes one bundled tube fuel nozzle of the plurality of bundled tube fuel nozzles. The method further includes adjusting an airflow received by the plurality of bundled tube fuel nozzles in response to opening the first fuel circuit of the plurality of fuel circuits. The airflow is adjusted based on an emissions output requirement corresponding with the first nozzle group. The method also includes firing the first nozzle group.
Abstract:
A gas turbine includes one or more combustors, and each combustor may include one or more fuel nozzles for mixing fuel with a compressed working fluid prior to combustion. The gas turbine further includes various structures for reducing the modal coupling of the combustion dynamics by producing a different convective time, fuel flow, and/or compressed working fluid flow through at least one fuel nozzle.
Abstract:
The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a linear actuator so as to maneuver the micro-mixer fuel nozzles axially along the liner.
Abstract:
A combustor includes an end cap that extends radially across at least a portion of the combustor. The end cap includes an upstream surface axially separated from a downstream surface. A plurality of tubes extend from the upstream surface through the downstream surface of the end cap to provide fluid communication through the end cap. Each tube in a first set of the plurality of tubes has an inlet proximate to the upstream surface and an outlet downstream from the downstream surface. Each outlet has a first portion that extends a different axial distance from the inlet than a second portion.