Abstract:
A system is configured for machining a workpiece (100), the workpiece includes an interior surface (110) that defines an internal passage (112). The system includes an electrode (116) located within the internal passage and electrically isolated from the workpiece, an electrolyte supply, a power supply, and a remover. The electrolyte supply is configured for circulating an electrolyte in a gap between the electrode and the workpiece. The power supply is configured for applying a voltage between the electrode and the workpiece to facilitate smoothing the interior surface. The remover is configured for completely removing the electrode from within the internal passage after smoothing the interior surface.
Abstract:
An electric submersible pump and pump system including additively manufactures structures and method of manufacture are disclosed. The pump system including the electric submersible pump and an electric motor configured to operate the electric submersible pump. The electric submersible pump including a housing, at least one impeller and at least one diffuser disposed within the housing in cooperative engagement. The housing, the at least one impeller, and the at least one diffuser defining an internal volume configured to receive a fluid. At least one of the at least one impeller and the at least one diffuser configured as a monolithic additively manufactured structure comprised of a metal matrix composite. Also provided is an electric submersible pump including an impeller and a diffuser, wherein at least one of the impeller and the diffuser is configured as a monolithic additively manufactured structure comprised of a tungsten carbide (WC) dispersed in a metal matrix.
Abstract:
A system includes a magnetic material supply for regulating a magnetic material flow rate of a magnetic material and a binder material supply for regulating a binder material flow rate of a binder material. A nozzle is configured for depositing a deposition mixture of the magnetic material and the binder material on a surface and a preheater is configured to preheat the deposition mixture before depositing on the surface. A controller is in operative communication with the magnetic material supply, the binder material supply, and the preheater. The controller is configured to receive an inductor core design file that represents a geometry and a magnetic permeability distribution of an inductor core, move the nozzle to one or more deposition locations, and adjust the magnetic material flow rate to the binder material flow rate to achieve a deposition mixture having a desired magnetic permeability at the deposition locations.
Abstract:
A gradient coil comprises a curved conductor, which is tubular and has a general spiral shape. The curved conductor is formed by a process comprising depositing at least one non-conductive material layer by layer to form a substrate, and coating at least a portion of a surface of the substrate with a conductive material. The substrate has a shape matching with the general spiral shape of the curved conductor. Embodiments of the present disclosure further refer to a method for manufacturing the gradient coil.
Abstract:
The embodiments disclosed herein relate generally to magnetic resonance imaging systems and, more specifically, to the manufacturing of a gradient coil assembly for magnetic resonance imaging (MRI) systems. For example, in one embodiment, a method of manufacturing a gradient coil assembly for a magnetic resonance imaging system includes depositing a first layer comprising a base material onto a surface to form a substrate and depositing a second layer onto the first layer. The second layer may enable bonding between a conductor material and the substrate. The method also includes depositing a third layer onto the second layer using a consolidation process. The consolidation process uses the conductor material to form at least a portion of a gradient coil.