Abstract:
An electrode applied in electro-machining processes, where the electrode includes a main body portion and at least one built-in internal flushing passage for introducing a flushing liquid to a volume between the electrode and a workpiece to be machined. The electrode is made by an additive fabrication process that enables specialized flushing for enhancing waste material evacuation and incorporate special material properties like zones of high electrical conductivity and thermal resistance. The fabrication process produces materials and geometries that could not otherwise be made using conventional processing.
Abstract:
The present invention relates to an additive manufacturing system and its methods. The system includes a material conveyor, an energy source, and a micro-forging device. The material conveyor is configured to convey material. The energy source is configured to direct an energy beam toward the material, the energy beam fuses at least a portion of the material to form a solidified portion. The micro-forging device is movable along with the material conveyor for forging the solidified portion, wherein the micro-forging device comprises a first forging hammer and a second forging hammer, the first forging hammer is configured to impact the solidified portion to generate a first deformation, and the second forging hammer is configured to impact the solidified portion to generate a second deformation greater than the first deformation.
Abstract:
A system is configured for machining a workpiece (100), the workpiece includes an interior surface (110) that defines an internal passage (112). The system includes an electrode (116) located within the internal passage and electrically isolated from the workpiece, an electrolyte supply, a power supply, and a remover. The electrolyte supply is configured for circulating an electrolyte in a gap between the electrode and the workpiece. The power supply is configured for applying a voltage between the electrode and the workpiece to facilitate smoothing the interior surface. The remover is configured for completely removing the electrode from within the internal passage after smoothing the interior surface.
Abstract:
The present invention relates to an additive manufacturing system and its methods. The system includes a material conveyor, an energy source, and a micro-forging device. The material conveyor is configured to convey material. The energy source is configured to direct an energy beam toward the material, the energy beam fuses at least a portion of the material to form a solidified portion. The micro-forging device is movable along with the material conveyor for forging the solidified portion, wherein the micro-forging device comprises a first forging hammer and a second forging hammer, the first forging hammer is configured to impact the solidified portion to generate a first deformation, and the second forging hammer is configured to impact the solidified portion to generate a second deformation greater than the first deformation.
Abstract:
A method of fabricating a component is provided. The method includes forming one or more grooves in a surface of a substrate, where the substrate has at least one hollow interior space. Each of the one or more grooves extends at least partially along the substrate surface and has a base and a top. The base is wider than the top, such that each of the one or more grooves comprises a re-entrant shaped groove. The method further includes forming one or more access holes through the base of a respective groove, to connect the groove in fluid communication with respective ones of the hollow interior space(s), and disposing a coating over at least a portion of the substrate surface. The one or more grooves and coating define one or more re-entrant shaped channels for cooling the component. A component with one or more re-entrant shaped channels and a method of coating a component are also provided.
Abstract:
An additive manufacturing system, comprises an energy source device for providing a first energy beam and a second energy beam; and a forging device comprising a forging head. The first energy beam and a substrate are configured to move relative to each other to fuse at least a portion of a material added to the surface of the substrate for forming a cladding layer on the substrate. The forging head is configured to forge the cladding layer during formation of the cladding layer. The second energy beam is configured to heat a forging area of the cladding layer.
Abstract:
A system is configured for machining a workpiece (100), the workpiece includes an interior surface (110) that defines an internal passage (112). The system includes an electrode (116) located within the internal passage and electrically isolated from the workpiece, an electrolyte supply, a power supply, and a remover. The electrolyte supply is configured for circulating an electrolyte in a gap between the electrode and the workpiece. The power supply is configured for applying a voltage between the electrode and the workpiece to facilitate smoothing the interior surface. The remover is configured for completely removing the electrode from within the internal passage after smoothing the interior surface.
Abstract:
An additive manufacturing system, comprises an energy source device for providing a first energy beam and a second energy beam; and a forging device comprising a forging head. The first energy beam and a substrate are configured to move relative to each other to fuse at least a portion of a material added to the surface of the substrate for forming a cladding layer on the substrate. The forging head is configured to forge the cladding layer during formation of the cladding layer. The second energy beam is configured to heat a forging area of the cladding layer.
Abstract:
An electrode applied in electro-machining processes, where the electrode includes a main body portion and at least one built-in internal flushing passage for introducing a flushing liquid to a volume between the electrode and a workpiece to be machined. The electrode is made by an additive fabrication process that enables specialized flushing for enhancing waste material evacuation and incorporate special material properties like zones of high electrical conductivity and thermal resistance. The fabrication process produces materials and geometries that could not otherwise be made using conventional processing.
Abstract:
An electrode applied in electro-machining processes is provided. The electrode comprises a main body portion and at least one built-in internal flushing passage for introducing a flushing liquid to a volume between the electrode and a workpiece to be machined. The electrode is made by an additive fabrication process that enables specialized flushing for enhancing waste material evacuation and incorporate special material properties like zones of high electrical conductivity and thermal resistance. The fabrication process produces materials and geometries that could not otherwise be made using conventional processing.