Abstract:
A system for installation in a vehicle and for controlling a remote device including a trainable transceiver, a camera, an output device, and a control circuit coupled to the trainable transceiver and the camera. The control circuit is configured to use data received from the camera to determine if the vehicle is well positioned within a garage, and the control circuit is configured to provide an indication that the vehicle is well positioned using the output device in response to determining that the vehicle is well positioned within a garage.
Abstract:
A system includes a communication device and a user interface. The communication device includes a universal toll module configured to transmit a toll signal that includes at least one electronic toll code to be communicated to an electronic toll system. The universal toll module is communicatively coupled to a vehicle bus of the vehicle. The user interface is communicatively coupled to the vehicle bus.
Abstract:
A trainable transceiver for controlling a remote device includes a transceiver circuit configured, based on training information, to control the remote device, a communications device configured to communicate with a mobile communications device, an output device, and a control circuit coupled to the transceiver circuit, coupled to the communications device, and coupled to the output device. The control circuit is configured to receive notification information from the mobile communications device via the communications device, and wherein the control circuit is configured to generate an output using the output device based on the notification information.
Abstract:
A system includes a communication device and a user interface. The communication device includes a universal toll module configured to transmit a toll signal that includes at least one electronic toll code to be communicated to an electronic toll system. The universal toll module is communicatively coupled to a vehicle bus of the vehicle. The user interface is communicatively coupled to the vehicle bus.
Abstract:
A display system for a vehicle is disclosed. The display system comprises a display device disposed in a passenger compartment of the vehicle. The display device comprises a screen and at least one sensor. The display system further comprises a controller in communication with the display device and an imager configured to capture image data in a field of view. The controller is operable adjust at least one of a position and a scale of a desired view of the image data for display on the screen in response to an input received by the at least one sensor.
Abstract:
A trainable transceiver for controlling a remote device includes a transceiver circuit configured, based on training information, to control the remote device, a communications device configured to communicate with a mobile communications device, an output device, and a control circuit coupled to the transceiver circuit, coupled to the communications device, and coupled to the output device. The control circuit is configured to receive notification information from the mobile communications device via the communications device, and wherein the control circuit is configured to generate an output using the output device based on the notification information.
Abstract:
A display system for a vehicle is disclosed. The display system comprises a display device disposed in a passenger compartment of the vehicle. The display device comprises a screen. The display system further comprises a first imager configured to capture a first image data corresponding to a rearward directed field of view from the vehicle and a second imager configured to capture a second image data corresponding to a field of view of a passenger compartment of the vehicle. A controller of the display system is configured to display the first image data on a first portion of the screen and selectively display the second image data on a second portion of the screen in response to a detection of a display prompt.
Abstract:
A system for installation in a vehicle and for controlling a remote device includes a camera, a trainable transceiver, and a control circuit coupled to the camera and the trainable transceiver. The control circuit is configured to use geographic location information to determine when to initiate a process of using the camera to identify the remote device and transmit an activation signal formatted to control the remote device. Upon initiation of the process, the control circuit is configured to use the camera to identify the remote device by comparing information received via the camera to information stored in memory, and wherein the control circuit is configured to automatically transmit an activation signal formatted to control the remote device, using the trainable transceiver, in response to identifying the remote device.
Abstract:
A trainable transceiver for installation in a vehicle and for controlling a remote device includes a transceiver circuit configured, based on training information, to control the remote device, a communications device configured to communicate with a mobile communications device, an output device, and a control circuit coupled to the transceiver circuit, coupled to the communications device, and coupled to the output device. The control circuit is configured to receive notification information from the mobile communications device via the communications device, and wherein the control circuit is configured to generate an output using the output device based on the notification information.
Abstract:
A trainable transceiver for controlling a remote device includes a transceiver circuit configured based on training information to communicate with the remote device, a communications device configured to communicate with a mobile communications device, and a control circuit coupled to the transceiver circuit, and coupled to the communications device. The control circuit is configured to transmit diagnostic information related to the trainable transceiver to a mobile communications device via the communications device.