Abstract:
One method disclosed herein includes forming a layer of silicon/germanium having a germanium concentration of at least 30% on a semiconducting substrate, forming a plurality of spaced-apart trenches that extend through the layer of silicon/germanium and at least partially into the semiconducting substrate, wherein the trenches define a fin structure for the device comprised of a portion of the substrate and a portion of the layer of silicon/germanium, the portion of the layer of silicon/germanium having a first cross-sectional configuration, forming a layer of insulating material in the trenches and above the fin structure, performing an anneal process on the device so as to cause the first cross-sectional configuration of the layer of silicon/germanium to change to a second cross-sectional configuration that is different from the first cross-sectional configuration, and forming a final gate structure around at least a portion of the layer of silicon/germanium having the second cross-sectional configuration.
Abstract:
Disclosed herein are various methods of forming stressed channel regions on 3D semiconductor devices, such as, for example, FinFET semiconductor devices, through use of epitaxially formed materials. In one example, the method includes forming a plurality of spaced-apart trenches in a semiconducting substrate, wherein the trenches define at least a portion of a fin for the device, and performing an epitaxial deposition process to form an epitaxially formed stress-inducing material in the trenches.