Abstract:
Methods for routing a metal routing layer based on mask design rules and the resulting devices are disclosed. Embodiments may include laying-out continuous metal lines in a semiconductor design layout, and routing, by a processor, a metal routing layer using the continuous metal lines according to placement of cut or block masks based on cut or block mask design rules.
Abstract:
A dense library architecture using an M0 hand-shake and the method of forming the layout are disclosed. Embodiments include forming first and second active areas on a substrate, at the top and bottom of a cell, separated from each other; forming first through third gate lines perpendicular to the active areas, where the first and third gate lines are dummy gates at the cell edges; forming trench silicide segments on each of the active areas, between the first, second, and third gate lines; forming first and second M1 metal lines between the first and second gate lines and the second and third gate lines, respectively; forming a M0 segment between the first and second active regions perpendicular to the M1 metal lines; forming a CB between the M0 segment and the second gate line; and forming a V0 from the first metal line to the M0 segment.
Abstract:
A method involving identifying a pattern for an overall target cut mask to be used in patterning line-type features that includes a target non-rectangular opening feature having an inner, concave corner, decomposing the overall target cut mask pattern into first and second sub-target patterns, wherein the first sub-target pattern comprises a first rectangular-shaped opening feature corresponding to a first portion, but not all, of the target non-rectangular opening feature and the second sub-target pattern comprises a second rectangular-shaped opening feature corresponding to a second portion, but not all, of the target non-rectangular opening feature, the first and second openings overlapping adjacent the inner, concave corner, and generating first and second sets of mask data corresponding to the first and second sub-target patterns, wherein at least one of the first and second sets of mask data is generated based upon an identified contact-to-end-of-cut-line spacing rule.
Abstract:
One method disclosed herein involves, among other things, identifying a plurality of features within an overall pattern layout that cannot be decomposed using the SADP process, wherein at least first and second adjacent features are required to be same-color features, decreasing a spacing between the first and second adjacent features such that the first feature and the second feature become different-color features so as to thereby render the plurality of features decomposable using the SADP process, decomposing the overall pattern layout into a mandrel mask pattern and a block mask pattern, and generating mask data sets corresponding to the mandrel mask pattern and the block mask pattern.
Abstract:
Methodologies and an apparatus enabling a selection of design rules to improve a density of features of an IC design are disclosed. Embodiments include: determining a feature overlapping a grating pattern of an IC design, the grating pattern including a plurality of grating structures; determining a shape of a cut pattern overlapping the grating pattern; and selecting one of a plurality of rules for the feature based on the determined shape.
Abstract:
A design methodology for determining a via enclosure rule for use with a self-aligned double pattern (SADP) technique is disclosed. The shape of the block mask serves as a criterion for choosing a via enclosure rule. Different block mask shapes within an integrated circuit design may utilize different rules and provide different margins for via enclosure. A tight via enclosure design rule reduces the margin of a line beyond the via where possible, while a loose via enclosure design rule increases the margin of a line beyond the via where it is beneficial to do so.