Abstract:
Methods for performing design rule checking of a circuit design are provided. The methods include, for instance: providing a circuit design for an integrated circuit layer, in which the circuit design includes a plurality of design lines oriented in a particular direction; and automatically performing a design rule check of the circuit design, which may include forming a verification pattern for the circuit design, the verification pattern comprising a plurality of verification lines and a plurality of verification regions, wherein one or more verification regions are associated with and connected to one verification line of the plurality of verification lines, and checking the verification pattern for any verification line overlapping a verification region. The circuit design may be considered to fail the design rule check if an end of one verification line overlaps any verification region associated with another verification line of the verification pattern.
Abstract:
One method disclosed herein involves, among other things, generating a set of mandrel mask rules, block mask rules and a virtual, software-based non-mandrel-metal mask. The method also includes creating a set of virtual non-mandrel mask rules that is a replica of the mandrel mask rules, generating a set of metal routing design rules based upon the mandrel mask rules, the block mask rules and the virtual non-mandrel mask rules, generating the circuit routing layout based upon the metal routing design rules, decomposing the circuit routing layout into a mandrel mask pattern and a block mask pattern, generating a first set of mask data corresponding to the mandrel mask pattern, and generating a second set of mask data corresponding to the block mask pattern.
Abstract:
At least one method, apparatus and system disclosed involves circuit layout for comprising a unidirectional metal layout. A first trench silicide (TS) formation is formed in a first active area of a functional cell. A first CA formation if formed above the first TS formation. A first vertical metal formation is formed in a first metal layer from the first active area to a second active area of the functional cell. The first vertical metal formation is formed offset relative to, and in contact with, the CA formation. A second TS formation is formed in a second active area of the functional cell. A second CA formation is formed above the second TS formation. The CA formation is formed offset the first vertical metal formation, operatively coupling the first and second active areas.
Abstract:
A method of forming an ultra-regular layout with unidirectional M1 metal line and the resulting device are disclosed. Embodiments include forming first and second vertical gate lines, spaced from and parallel to each other; forming a M1 metal line parallel to and between the first and second gate lines; forming first, second, and third M0 metal segments perpendicular to the M1 metal line; connecting the first M0 metal segment to the M1 metal line and the second gate line; connecting the second M0 metal segment to the first gate line and the second gate line; connecting the third M0 metal segment to the first gate line and the M1 metal line; forming a first gate cut on the first gate line between the second and third M0 metal segments; and forming a second gate cut on the second gate line between the first and second M0 segments.
Abstract:
A method involving identifying a pattern for an overall target cut mask to be used in patterning line-type features that includes a target non-rectangular opening feature having an inner, concave corner, decomposing the overall target cut mask pattern into first and second sub-target patterns, wherein the first sub-target pattern comprises a first rectangular-shaped opening feature corresponding to a first portion, but not all, of the target non-rectangular opening feature and the second sub-target pattern comprises a second rectangular-shaped opening feature corresponding to a second portion, but not all, of the target non-rectangular opening feature, the first and second openings overlapping adjacent the inner, concave corner, and generating first and second sets of mask data corresponding to the first and second sub-target patterns, wherein at least one of the first and second sets of mask data is generated based upon an identified contact-to-end-of-cut-line spacing rule.
Abstract:
One method disclosed herein involves, among other things, generating a set of mandrel mask rules, block mask rules and a virtual, software-based non-mandrel-metal mask. The method also includes creating a set of virtual non-mandrel mask rules that is a replica of the mandrel mask rules, generating a set of metal routing design rules based upon the mandrel mask rules, the block mask rules and the virtual non-mandrel mask rules, generating the circuit routing layout based upon the metal routing design rules, decomposing the circuit routing layout into a mandrel mask pattern and a block mask pattern, generating a first set of mask data corresponding to the mandrel mask pattern, and generating a second set of mask data corresponding to the block mask pattern.
Abstract:
Disclosed herein are various pellicles for use during extreme ultraviolet (EUV) photolithography processes. An EUV radiation device disclosed herein includes a reticle, a substrate support stage, a pellicle positioned between the reticle and the substrate support stage, wherein the pellicle includes an aerogel grid and a membrane formed on the aerogel grid, and a radiation source that is adapted to generate radiation at a wavelength of about 20 nm or less that is to be directed through the pellicle toward the reticle.
Abstract:
Disclosed herein are various pellicles for use during extreme ultraviolet (EUV) photolithography processes. An EUV radiation device disclosed herein includes a reticle, a substrate support stage, a pellicle positioned between the reticle and the substrate support stage, wherein the pellicle includes an aerogel grid and a membrane formed on the aerogel grid, and a radiation source that is adapted to generate radiation at a wavelength of about 20 nm or less that is to be directed through the pellicle toward the reticle.
Abstract:
A semiconductor structure includes a substrate having a plurality of semiconductor devices disposed therein. A dielectric layer is disposed over the substrate. A plurality of substantially parallel metal lines are disposed in the dielectric layer. The metal lines include active lines for routing signals to and from the devices, and dummy lines which do not route signals to and from the devices. Signal cuts are disposed in the active lines. The signal cuts define tips of the active lines. Assist cuts are disposed exclusively in the dummy lines and do not define tips of the active lines. The assist cuts are located proximate the signal cuts such that a first density of assist cuts and signal cuts in an area surrounding the signal cuts is substantially greater than a second density of signal cuts alone in the same area.
Abstract:
One method disclosed herein involves, among other things, generating a set of mandrel mask rules, block mask rules and a virtual, software-based non-mandrel-metal mask. The method also includes creating a set of virtual non-mandrel mask rules that is a replica of the mandrel mask rules, generating a set of metal routing design rules based upon the mandrel mask rules, the block mask rules and the virtual non-mandrel mask rules, generating the circuit routing layout based upon the metal routing design rules, decomposing the circuit routing layout into a mandrel mask pattern and a block mask pattern, generating a first set of mask data corresponding to the mandrel mask pattern, and generating a second set of mask data corresponding to the block mask pattern.