Abstract:
An assembly includes a steering column, a steering wheel coupled to the steering column, and a shifter coupled between the steering column and the steering wheel. The shifter includes a shifter body and a shift actuator movably coupled to the shifter body. The assembly further includes a coupler movable through the shifter body between a first coupler position and a second coupler position. The coupler is configured to couple the shifter body to the steering wheel when the coupler is in the first coupler position to permit the shift actuators to rotate along with the steering wheel. The coupler is configured to couple the shifter to the steering column when the coupler is in the second coupler position to maintain the shifter body stationary relative to the steering wheel.
Abstract:
A thermal management system for a vehicle includes a plurality of fluid flow circuits including a heating ventilation and air conditioning (HVAC) circuit circulating a flow of refrigerant therethrough and including an evaporator, a chiller heat exchanger, a first expansion valve located upstream of the evaporator, a second expansion valve located upstream of the chiller heat exchanger, and a heat exchanger located fluidly upstream of the expansion valves. A propulsion cooling circuit circulates a flow of coolant therethrough which is utilized to condition one or more propulsion components of the vehicle. The flow of coolant is directed through the heat exchanger, thus subcooling the flow of refrigerant. A controller is operably connected to one or more control points of the thermal management system and is configured to adjust the one or more control points to achieve a target amount of subcooling of the flow of refrigerant at the heat exchanger.
Abstract:
A thermal control system includes first and second components. A plurality of coolant conduits fluidly couple the components to define a coolant circuit. A pump is operable to circulate coolant among the conduits. Within the coolant circuit, the first component is upstream of the second component and the pump is upstream of the first component. A controller is configured to selectively operate according to a circuit heating mode, wherein the controller controls the pump at a first speed and controls the first respective component as a thermal source, and a local heating mode, wherein the local heating mode the control controls the pump at a second speed and controls the first respective component as a thermal source. The second speed is less than the first speed. The controller operates in the local heating mode in response to a heating request associated with the second respective component.
Abstract:
A system and method for managing thermal energy of a vehicle having a battery and an electric propulsion system are provided. The system monitors a current battery temperature, calculates an actual average battery temperature, and compares the calculated actual average battery temperature to a target lifetime battery temperature. If the actual average battery temperature is greater than the target lifetime battery temperature, and the current battery temperature is greater than the target lifetime battery temperature, the system cools the battery to below the current battery temperature. However, if the actual average battery temperature is less than the target lifetime battery temperature, and the current battery temperature is greater than the target lifetime battery temperature, the system delays cooling the battery. Therefore, the system may avoid expending energy to cool the battery in certain conditions.
Abstract:
A method for managing thermal energy of a vehicle having a battery and an electric propulsion system is provided. The system monitors a current battery temperature, after the vehicle is connected to an outside power source at a plug time, and determines an outside air temperature. The system predicts a cabin heating temperature for a subsequent drive cycle. The subsequent drive cycle occurs when the vehicle is no longer connected to the outside power source. If the predicted cabin heating temperature is greater than the outside air temperature, the system heats the battery to a thermal storage temperature that is greater than a target operating temperature of the battery. Therefore, thermal energy is stored within the battery, and may be transferred to heat the cabin.
Abstract:
An assembly includes a steering column, a steering wheel coupled to the steering column, and a shifter coupled between the steering column and the steering wheel. The shifter includes a shifter body and a shift actuator movably coupled to the shifter body. The assembly further includes a coupler movable through the shifter body between a first coupler position and a second coupler position. The coupler is configured to couple the shifter body to the steering wheel when the coupler is in the first coupler position to permit the shift actuators to rotate along with the steering wheel. The coupler is configured to couple the shifter to the steering column when the coupler is in the second coupler position to maintain the shifter body stationary relative to the steering wheel.