Abstract:
Disclosed are vehicle steering column assemblies with viscous dampers, methods for making and for using such assemblies, and motor vehicles with steering column assemblies having viscous dampers. A steering column assembly is disclosed that includes a first shaft member that connects to a steering wheel/handle, and a second shaft member that connects to a vehicle body. These shaft members are telescopingly connected such that one shaft member selectively translates longitudinally with respect to the other shaft member. A viscous damper assembly is interposed between the two shaft members. The viscous damper assembly includes a damper housing with first and second reservoir volumes disposed inside the housing. Multiple constricted flow channels fluidly connect the reservoir volumes. Viscous fluid flows from the first reservoir volume, through the constricted flow channels, to the second reservoir volume in response to relative vibrational displacement between the shaft members to thereby viscously attenuate vibrational energy.
Abstract:
Disclosed are vehicle steering column assemblies with viscous dampers, methods for making and for using such assemblies, and motor vehicles with steering column assemblies having viscous dampers. A steering column assembly is disclosed that includes a first shaft member that connects to a steering wheel/handle, and a second shaft member that connects to a vehicle body. These shaft members are telescopingly connected such that one shaft member selectively translates longitudinally with respect to the other shaft member. A viscous damper assembly is interposed between the two shaft members. The viscous damper assembly includes a damper housing with first and second reservoir volumes disposed inside the housing. Multiple constricted flow channels fluidly connect the reservoir volumes. Viscous fluid flows from the first reservoir volume, through the constricted flow channels, to the second reservoir volume in response to relative vibrational displacement between the shaft members to thereby viscously attenuate vibrational energy.
Abstract:
Methods and apparatus are provided for attenuating translational vibration in a steering system. The apparatus can include a housing having a fluid chamber, a recess and a mounting bracket that couples the housing to a hand wheel of the steering system. The fluid chamber can be in communication with the recess. The apparatus can include a mass disposed in the recess of the housing, which can have a fixed stiffness. The apparatus can include a damping fluid disposed in the housing so as to flow between the fluid chamber and the recess. The mass can be movable in the damping fluid, and the damping fluid can have a variable stiffness. The apparatus can further include a control module that determines a translational vibration experienced at the hand wheel and outputs a signal to vary the stiffness of the damping fluid in response to the translational vibration in substantially real-time.
Abstract:
In accordance with an exemplary embodiment, a vehicle is provided that includes: a body; a drive system configured to propel the body; and a front motor compartment formed within the body, the front motor compartment including: a first shock tower; a second shock tower; and a structural integration brace for a vehicle, including: a first end attached to a first shock tower of the vehicle; and a second end attached to a second shock tower of the vehicle; wherein the structural integration brace extends between the first end and the second end, generating a load path therebetween within the front motor compartment of the vehicle.
Abstract:
A panel assembly includes a first panel defining a surface, and a boom attenuation panel. The boom attenuation panel includes a circumferential edge, and a central portion. The boom attenuation panel is attached to the surface of the first panel, along the circumferential edge of the boom attenuation panel. The central portion of the boom attenuation panel is spaced from the surface of the first panel a gap distance to form a gas chamber between the surface of the first panel and the central portion of the boom attenuation panel. The gas chamber contains a gas that is moveable within the gas chamber in response to wave-like motion of the first panel. Movement of the gas increases the effective acoustic mass of the boom attenuation panel, and damped the wave-like motion of the first panel, which operates to reduce noise generated from the wave-like motion of the first panel.
Abstract:
Methods and vehicles are provided for providing haptic feedback to a vehicle occupant. In one embodiment, the method includes determining at least one of interior conditions and exterior conditions of a vehicle. The vehicle includes a plurality of haptic actuators disposed in a seat. The method further includes calculating at least one of a pulse width modulation (PWM) pattern and an on/off compensation pattern based on the determined interior conditions and exterior conditions. The method further includes generating a signal with active periods that include at least one of the calculated patterns to command the plurality of haptic actuators to produce haptic pulses.
Abstract:
An acoustic sensing system for a motor vehicle includes a strain gauge mounted at a motor vehicle surface, and a sensing circuit operatively coupled to the strain gauge. The sensing circuit is configured and disposed to detect acoustic responses in a passenger compartment of the motor vehicle through the strain gauge.
Abstract:
Methods and apparatus are provided for attenuating torsional vibration of a steering system. The apparatus can include a housing including a chamber. The housing can be couplable to a rim of a hand wheel of the steering system. The apparatus can include a mass disposed in the chamber of the housing. The mass can have a fixed stiffness. The apparatus can also include a damping fluid disposed in the chamber of the housing. The damping fluid can have a variable stiffness. The apparatus can include a control module that determines a torsional vibration experienced by the steering system and outputs a signal to vary the stiffness of the damping fluid in response to the torsional vibration in substantially real-time.
Abstract:
In accordance with an exemplary embodiment, a vehicle is provided that includes: a body; a drive system configured to propel the body; and a front motor compartment formed within the body, the front motor compartment including: a first shock tower; a second shock tower; and a structural integration brace for a vehicle, including: a first end attached to a first shock tower of the vehicle; and a second end attached to a second shock tower of the vehicle; wherein the structural integration brace extends between the first end and the second end, generating a load path therebetween within the front motor compartment of the vehicle.
Abstract:
A panel assembly includes a first panel and noise attenuation panel that is attached to the first panel. The noise attenuation panel includes a central portion having a length and a width. The central portion of the noise attenuation panel is spaced from the surface of the first panel by a gap distance to form a gas chamber between the surface of the first panel and the central portion of the noise attenuation panel. The panel assembly includes at least one wall structure that is disposed within the gas chamber. The wall structure extends between the central portion of the noise attenuation panel and the surface of the first panel, and includes a pattern that defines a fluid flow path through the gas chamber, which includes an effective length that is greater than both the length and the width of the central portion of the noise attenuation panel.