Abstract:
Methods and apparatus are provided for preserving privacy of data collected from a vehicle. In one embodiment, a method includes: receiving, by a processor, privacy preferences entered by a user of the vehicle; receiving, by the processor, the data collected from the vehicle; distorting, by the processor, the data; downsampling, by the processor, the distorted data based on the privacy preferences; and communicating, by the processor, the downsampled, distorted vehicle data to a third-party entity.
Abstract:
A vehicle system controller having an asymmetric system architecture and a method of operating the vehicle system controller is provided. The vehicle system controller includes a primary controller and a secondary controller in communications with the vehicle systems. Each of the controllers include a memory unit containing software application and a processor for executing the software to generate commands for the vehicle systems. The memory unit of the secondary controller contains only a subset of the total software applications contained in the memory unit of the primary controller. The subset of software applications is only for the operation of pre-identified features of the vehicle systems. The vehicle systems are configured to default to commands from the primary controller, but switches to the commands from the secondary controller for a predetermined length of time if the primary controller becomes fail-silent.
Abstract:
An electric power system includes an energy recovery system that is operable to convert kinetic energy into electric energy at a first voltage. A primary energy storage device is electrically connected to the energy recovery system at the first voltage. A first voltage autonomous driving system load is disposed in a parallel circuit with the energy recovery system and the primary energy storage device. A bi-directional DC-DC converter is electrically connected to the energy recovery system and the primary energy storage device for converting the electric energy between the first voltage and a second voltage. A secondary energy storage device is electrically connected to the bi-directional DC-DC converter at the second voltage. A second voltage autonomous driving system load is disposed in a parallel circuit with the secondary energy storage device.
Abstract:
A method and system for recommending applications to users of in-vehicle infotainment systems are disclosed. Application rating data from many road vehicle infotainment system users are collected on a central server, including both explicit ratings and implicit ratings. Implicit ratings may be calculated based on application usage data. The user/application rating data is filtered for relevance, and then analyzed to determine inferred ratings for user/application relationships where no rating exists. The inferred ratings are calculated using both a user-driven consensus rating calculation and an application-driven consensus rating calculation. The inferred ratings, along with optional cyberspace-based external inputs, are used to synthesize application recommendations for users. The synthesized recommendations for application consideration are provided to the appropriate user via downloading from the central server to the infotainment system in the user's vehicle.
Abstract:
A method and system for recommending applications to users of in-vehicle infotainment systems are disclosed. Application rating data from many road vehicle infotainment system users are collected on a central server, including both explicit ratings and implicit ratings. Implicit ratings may be calculated based on application usage data. The user/application rating data is filtered for relevance, and then analyzed to determine inferred ratings for user/application relationships where no rating exists. The inferred ratings are calculated using both a user-driven consensus rating calculation and an application-driven consensus rating calculation. The inferred ratings, along with optional cyberspace-based external inputs, are used to synthesize application recommendations for users. The synthesized recommendations for application consideration are provided to the appropriate user via downloading from the central server to the infotainment system in the user's vehicle.
Abstract:
A method and system for dynamically configurable remote data collection from a subject vehicle in response to a task-specific data query is described. This includes the subject vehicle, and a second controller that wirelessly communicates with the subject vehicle, wherein the second controller is an off-board controller that is located remote from the subject vehicle. In one embodiment, the off-board controller is an element of a cloud computing system.
Abstract:
Methods and systems are provided for communicating trailer information from a trailer to a vehicle. In one embodiment, the method includes: a plurality of zone-based modules configured to communicate with at least one of sensors and actuators of a vehicle; and at least one command center module configured to communicate with the plurality of zone-based modules. The at least one of the plurality of zone-based modules includes a configuration sub-module configured to, by a processor, facilitate communication of the trailer information from the trailer to at least one other of the plurality of zone-based modules. Each of the plurality of zone-based modules includes a configuration sub-module configured to, by a processor, facilitate communication of the trailer information between the plurality of zone-based modules. The at least one command center module includes a configuration sub-module configured to, by a processor, facilitate communication of the trailer information between the plurality of zone-based modules and vehicle applications.
Abstract:
A vehicle, operating system of a vehicle and a method of operating a vehicle is disclosed. A local electronic control unit is operated at the vehicle in order to control the vehicle. A backup electronic control unit is operated at a remote computing platform for control of the vehicle. A control of the vehicle is transferred from the local electronic control unit to the backup electronic control unit upon occurrence of a fault at the local electronic control unit.
Abstract:
Methods and apparatus are provided for preserving privacy of data collected from a vehicle. In one embodiment, a method includes: receiving, by a processor, privacy preferences entered by a user of the vehicle; receiving, by the processor, the data collected from the vehicle; distorting, by the processor, the data; downsampling, by the processor, the distorted data based on the privacy preferences; and communicating, by the processor, the downsampled, distorted vehicle data to a third-party entity.
Abstract:
A vehicle, a computer system for driving the vehicle and a method of operating the vehicle. The vehicle includes an embedded processor. The embedded processor receives an instruction to perform a computational task involving an operation of the vehicle and offloads the computer task to a remote processor. The remote processor receive the offloaded computational task from the embedded processor, performs the computational task to obtain a partial result, and provide the partial result to the embedded processor. The embedded processor performs the computational task starting with the partial results provided by the remote processor.