Abstract:
The present invention discloses a vibration system of a loudspeaker, comprising a diaphragm and a voice coil attached to one side of the diaphragm, wherein the diaphragm comprises at least two layers of polyether-ether-ketone base films, and furthermore, the diaphragm comprises at least one layer of crystallized polyether-ether-ketone base film and at least one layer of non-crystallized polyether-ether-ketone base film. The diaphragm made of both crystallized and non-crystallized polyether-ether-ketone base films can have both an effectively improved acoustic performance and a lowered resonance frequency f0, thus, the acoustic effect of the loudspeaker can be improved.
Abstract:
A loudspeaker module comprises a loudspeaker unit and a module housing. A front acoustic cavity and a rear acoustic cavity are formed between the module housing and the loudspeaker unit. The upper and lower ends of the front acoustic cavity and the rear acoustic cavity are open. The upper and lower end surfaces of the module housing are combined with a terminal electronic device through sealing cushions. An electronic device is also disclosed. The upper and lower surfaces of the module housing are combined with the circuit board or the device housing through sealing cushions. Such a structure fully utilizes the spaces of the loudspeaker module and the electronic device, expands the internal space of the loudspeaker module, increases the sizes of the loudspeaker unit and the sound cavities, and accordingly improves the acoustical performance of the product.
Abstract:
The present disclosure discloses a vibration suspension system for a transducer, which comprises at least one movable device provided with a magnetic conductive material, at least a part of the magnetic conductive material being arranged in an area where an alternating magnetic field overlaps with a static magnetic field, so that the static magnetic field and the alternating magnetic field are converged, and a magnetic field force generated by the interaction between the static magnetic field and the alternating magnetic field being applied to the magnetic conductive material, so as to drive the vibration suspension system to move; and at least one suspension device comprising an elastic recovery device for providing a restoring force for a reciprocal vibration of the vibration suspension system, one end of the elastic recovery device being fix to the movable device and the other end thereof being fixed to the inside of the transducer.
Abstract:
Disclosed is a magnetic potential transducer, comprising a fixed component and a movable component. The fixed component comprises: at least one static magnetic field generating device, the static magnetic field generating device forms a static magnetic field on the magnetic potential transducer; and at least one alternating magnetic field generating device, the alternating magnetic field generating device generates an alternating magnetic field on the magnetic potential transducer, and the alternating magnetic field is orthogonal or partially orthogonal to the static magnetic field. The movable component comprises at least one movable device and at least one suspension device, the movable device is provided with a magnetic conductive material, the magnetic conductive material moves in the magnetic potential transducer; at least a part of the magnetic conductive material is provided in an area where the alternating magnetic field and the static magnetic field overlap; a magnetic field force generated by the interaction.
Abstract:
Disclosed are a surface sound-emitting apparatus and an electronic device. The surface sound-emitting apparatus comprises an exciter, a vibrating part and a connection element, wherein the connection element is of a sheet-like structure, the vibrating part is disposed on the connection element, the exciter is disposed on the vibrating part, an edge of the connection element is configured to connect to the remaining portion of a surface of an electronic device, the connection element and the remaining portion of the surface together constitute the surface, the connection element is configured to provide an elastic recovery force, and the exciter is configured to provide a driving force.
Abstract:
Disclosed are a surface sound-emitting apparatus and an electronic device. The surface sound-emitting apparatus comprises an exciter, a vibrating part and a connection element, wherein the connection element is of a sheet-like structure, the vibrating part is disposed on the connection element, the exciter is disposed on the vibrating part, an edge of the connection element is configured to connect to the remaining portion of a surface of an electronic device, the connection element and the remaining portion of the surface together constitute the surface, the connection element is configured to provide an elastic recovery force, and the exciter is configured to provide a driving force.
Abstract:
Disclosed are a speaker module housing and a manufacturing method thereof. The speaker module housing comprises an upper housing, a lower housing, an annular connection member and a plate member. The annular connection member comprises a fixing portion and a connection portion. A speaker unit assembling hole is formed in the upper housing. The fixing portion of the annular connection member is fixedly connected with the speaker unit assembling hole. The connection portion of the annular connection member is electrically connected with the plate member.
Abstract:
Disclosed is a moving-coil loudspeaker, comprising a vibration system and a magnetic circuit system located below the vibration system. The vibration system comprises a vibrating diaphragm, a spider, and a voice coil that are combined from top to bottom. The vibrating diaphragm comprises a vibrating diaphragm body with a surround, and a vibrating diaphragm reinforcing portion incorporated in the central position below the vibrating diaphragm body. The vibrating diaphragm reinforcing portion comprises a first layer of electrically conductive material, the spider comprises a second layer of electrically conductive material, and the vibrating diaphragm reinforcing portion is bonded to and conducts with the spider by an electrically conductive adhesive. The magnetic circuit system comprises a central spring washer, a central magnet, and a magnetically conductive yoke combined together from top to bottom. The first layer of electrically conductive material and the second layer of electrically conductive material serve as a movable plate, and the central spring washer, the central magnet and the magnetically conductive yoke serve as a fixed plate, thus forming a capacitor structure for detecting the vibration displacement of the moving-coil loudspeaker. With the capacitor structure provided by the present invention, the vibration displacement of the moving-coil loudspeaker can be monitored.
Abstract:
Disclosed is an electrical-acoustic transformation device, including: a vibration system and a magnetic circuit system with a magnetic gap; wherein the vibration system includes: a diaphragm, a voice coil provided below the diaphragm and suspending in the magnetic gap, a piezoelectric plate provided on one side of the diaphragm, a first frequency division circuit connected to the voice coil, and a second frequency division circuit connected to the piezoelectric plate; and the first frequency division circuit performs frequency division on an externally input first audio signal and outputs same to the voice coil; and the second frequency division circuit performs frequency division on an externally input second audio signal to obtain a high frequency signal to drive the piezoelectric plate. The present invention provides an electrical-acoustic transformation device with super wideband.
Abstract:
A method and system for testing a temperature tolerance limit of a loudspeaker. The method includes: selecting a test signal, and determining a test output voltage as a rated voltage of the loudspeaker, so that the loudspeaker reaches a rated amplitude; determining a gain boosting frequency point according to a resonant frequency of the loudspeaker; performing a plurality of tests for the loudspeaker, and in each test controlling the test signal to maintain the gain constant in a frequency band lower than the gain boosting frequency point and increase the gain in a frequency band higher than the gain boosting frequency point, testing and recording a temperature of the loudspeaker till the loudspeaker fails, and recording a temperature at the time of the failure; and determining a highest temperature that is tolerable by the loudspeaker before the loudspeaker fails.