Abstract:
A method for monitoring a dual-stage, separated gas/fluid shock strut includes receiving, by a controller, a primary chamber temperature sensor reading, a primary chamber pressure sensor reading, and a shock strut stroke sensor reading, calculating, by the controller, a secondary chamber nominal pressure based upon the primary chamber temperature sensor reading, determining, by the controller, a shock strut stroke associated with the secondary chamber nominal pressure, calculating, by the controller, a volume of oil in an oil chamber, a volume of gas in a primary gas chamber, a number of moles of gas in the primary gas chamber, a volume of oil leaked into the primary gas chamber, a volume of gas in a secondary chamber, and a number of moles of gas in the secondary chamber.
Abstract:
A method for monitoring a dual-stage shock strut may include measuring a first primary chamber pressure when the dual-stage shock strut is in a first state, measuring a first secondary chamber pressure when the dual-stage shock strut is in the first state, measuring a shock strut stroke when the dual-stage shock strut is in the first state, measuring a first temperature, measuring a second temperature, measuring a second primary chamber pressure when the dual-stage shock strut is in a second state, measuring a second secondary chamber pressure when the dual-stage shock strut is in the second state, and determining a servicing condition of the shock strut based upon at least the first primary chamber pressure, the first secondary chamber pressure, the shock strut stroke, the first temperature, the second temperature, the second primary chamber pressure, and the second secondary chamber pressure.
Abstract:
A method for monitoring a shock strut may comprise measuring a first shock strut pressure, measuring an ambient temperature, measuring a shock strut stroke, measuring a second shock strut pressure, and determining a servicing condition of the shock strut based upon the first shock strut pressure, the ambient temperature, the shock strut stroke, and the second shock strut pressure, wherein the servicing condition indicates whether it is desirable for the shock strut to be serviced with at least one of a liquid and a gas. The first shock strut pressure and the shock strut stroke may be measured before the takeoff event with a weight of an aircraft supported by the shock strut.
Abstract:
A dual-stage, separated gas/fluid shock strut arrangement includes a dual-stage, separated gas/fluid shock strut and a monitoring system. The shock strut includes a strut cylinder, a strut piston operatively coupled to the strut cylinder, an oil chamber, a primary gas chamber, and a secondary gas chamber. The monitoring system includes a first pressure/temperature sensor, a second pressure/temperature sensor, a stroke sensor, a recorder configured to receive a plurality of sensor readings from the first pressure/temperature sensor, the second pressure/temperature sensor, and/or the stroke sensor, a landing detector configured to detect a landing event based upon a stroke sensor reading received from the stroke sensor, and a health monitor configured to determine a volume of oil in the oil chamber, a primary chamber gas volume in the primary gas chamber, and a secondary chamber gas volume in the secondary gas chamber.
Abstract:
A monitoring system for a dual-stage, pressure-activated, mixed fluid gas shock strut, may comprise a controller, and a tangible, non-transitory memory configured to communicate with the controller, the tangible, non-transitory memory having instructions stored thereon that, in response to execution by the controller, cause the controller to perform operations comprising receiving, by the controller, a primary chamber temperature sensor reading, receiving, by the controller, a primary chamber pressure sensor reading, receiving, by the controller, a shock strut stroke sensor reading, and calculating, by the controller, an oil volume in a primary chamber of the shock strut. The instructions may cause the controller to perform further operations comprising calculating, by the controller, a number of moles of gas in a primary chamber of the shock strut and calculating, by the controller, a number of moles of gas in a secondary chamber of the shock strut.
Abstract:
A method includes detecting at least one position measurement of a separator piston of a pitch trim actuator. The method includes detecting at least one pressure measurement of a gas. The method includes detecting at least one temperature measurement of the gas. The method includes storing at least one position value based on the at least one position measurement of the separator piston, at least one pressure value based on the at least one pressure measurement of the gas and at least one temperature value based on the at least one temperature measurement of the gas. The method includes determining a volume of an oil within an oil chamber of the pitch trim actuator and a pressure of the gas within the gas chamber of the pitch trim actuator, based on the at least one position value, the at least one pressure value and the at least one temperature value.
Abstract:
A method and system of monitoring condition of a shock strut senses gas temperature, gas pressure, and stroke of the strut during a landing event. Oil loss is determined based upon a deviation of a transient pressure coefficient derived from transient gas pressures at two different strokes from a nominal coefficient value. Gas loss is determined based upon a temperature adjusted transient gas pressure at a selected stroke and a nominal gas pressure value at the selected stroke.
Abstract:
A method for monitoring a shock strut may comprise measuring a first shock strut pressure, measuring an ambient temperature, measuring a shock strut stroke, measuring a second shock strut pressure, and determining a servicing condition of the shock strut based upon the first shock strut pressure, the ambient temperature, the shock strut stroke, and the second shock strut pressure, wherein the servicing condition indicates whether it is desirable for the shock strut to be serviced with at least one of a liquid and a gas. The first shock strut pressure and the shock strut stroke may be measured before the takeoff event with a weight of an aircraft supported by the shock strut.
Abstract:
A method for monitoring a dual-stage, stroke activated, mixed fluid gas shock strut includes receiving, by a controller, primary chamber temperature and pressure sensor readings, secondary chamber pressure and temperature sensor readings, and a shock strut stroke sensor reading, calculating, by the controller, a compression factor, determining, by the controller, a plurality of compression factors for known oil volumes based on the primary chamber temperature sensor reading and/or the shock strut stroke sensor reading, and calculating, by the controller, an oil volume in a primary chamber of the shock strut, a number of moles of gas in the primary chamber of the shock strut, a volume of gas in a secondary chamber of the shock strut, and a number of moles of gas in the secondary chamber.
Abstract:
A shock strut assembly for a landing gear may comprise a strut cylinder, a strut piston configured to telescope relative to the strut cylinder, and a locking system. The locking system may be configured to restrict rotation of the strut piston relative to the strut cylinder in response to compression of the shock strut assembly.