Abstract:
The present application provides a gas turbine engine. The gas turbine engine may include a compressor and an inlet air system positioned upstream of the compressor. The inlet air system may include a wetted media pad for evaporative cooling. The wetted media pad may include a number of synthetic media sheets with a number of micro-channels therein.
Abstract:
In one embodiment, a system includes an intake section including a filter and one or more strain gauges. The system also includes a processor configured to receive strain information for the filter from the one or more strain gauges and determine an operating condition of the filter based at least in part on the strain information.
Abstract:
A system includes an inlet duct disposed about an inlet axis, wherein the inlet duct is configured to direct an airflow along the inlet axis to a compressor inlet. The inlet includes an inlet heating system and a heating portion having a longitudinal axis that is substantially perpendicular to the inlet axis. The inlet heating system includes a first conduit substantially parallel to the longitudinal axis that is configured to distribute a heated fluid directly to the airflow via a first set of openings of a first end zone of the first conduit and a second set of openings of a second zone of the first conduit. The first end zone is configured to receive the heated fluid from a heating source, the second zone is coupled to the first end zone, and the second zone is configured to receive the heated fluid from the first end zone.
Abstract:
A filter assembly for a gas turbine system includes a filter element configured to remove entrained particles from air which passes through the filter element in a first direction toward a central air passageway. A motion generator arranged to rotate the filter element about a longitudinal axis extending in an airflow direction of the air passageway to cause particles accumulated on the filter element to fall downwardly away from the filter element due to gravity.
Abstract:
A load coupling device includes a housing including an interior portion, an ambient air inlet provided in the housing, and a load coupling guard arranged in the housing. The load coupling guard includes a turbomachine end and a load end and a passage extending therebetween. A vent extends upwardly from the load coupling guard. The vent is fluidically exposed to the load end. An ambient air inlet passage is formed in the load coupling guard and fluidically connects the ambient air inlet and the vent. The load end is substantially fluidically isolated from the turbomachine end.