Abstract:
A silencer apparatus for a gas turbine inlet system ducting is disclosed. The inlet ducting contains a main silencer and a pre-silencer, and Inlet Bleed Heat (“IBH”) located between the silencers. The pre-silencer decreases the noise level from the turbine compressor and makes the air flow/temperature profiles more uniform. The main silencer reduces noise from the IBH and the remaining noise from the compressor to an appropriate level. The main silencer is comprised of a first plurality of sound-absorbing splitters disposed along the gas flow direction in the gas turbine inlet ducting. The pre-silencer is comprised of a second plurality of sound-absorbing splitters disposed along the gas flow direction in the gas turbine inlet ducting, but staggered with respect to the first plurality of splitters to thereby block a direct line of travel for noise acoustical waves from the compressor travelling opposite the gas flow direction in the inlet ducting.
Abstract:
An inlet filter housing includes a plurality of components that collectively form a complete filtering and conditioning system for filtering and conditioning a fluid along a housing flow path. Each component is fitted within an external structure of an International Organization of Standards (ISO) shipping container, which provides a rectangular cuboid enclosure. Each component includes operative structure of at least one of: a) only a portion of an axial extent of the filtering and conditioning system, and b) only a portion of a lateral cross-sectional area of the housing flow path.
Abstract:
A silencer duct that may be part of, for example, a turbomachine inlet and may include a duct body, and a silencer element extending axially through the duct body. A first portion of a coupler may extend axially from a first side of the duct body. A second portion of a coupler may extend axially from a second side of the duct body. At least one of the first portion of the coupler and the second portion of the coupler are configured to couple to at least one of an adjacent silencer duct and an inlet.
Abstract:
A support assembly for supporting a gas turbine during a manufacturing configuration, a shipping configuration and an operating configuration. The support assembly includes a stand leg securable to a base, and the stand leg includes a turbine casing interface with a slot sized to receive a turbine casing pin. A support plate is attachable to the turbine casing interface. The support plate includes a closed pin aperture that is sized to fit over the turbine casing pin in the slot. The slot is a U-shaped slot in the turbine casing interface, and the U-shaped slot is open to receive the turbine casing pin from above.
Abstract:
An assembly for securing machinery such as a gas turbine on a deck includes a first block unit configured to restrict vertical displacement of the machinery relative to the deck, and a second block unit configured to restrict axial and lateral displacement of the machinery. The first block unit includes a base block securable to the deck and an attachment block secured to the base block. The second block unit is engageable with the machinery base.
Abstract:
A progressive shipping stand includes a stage one assembly, and a stage two assembly. The stage one assembly and the stage two assembly together define a first profile, and the stage two assembly alone defines a second profile, smaller than the first profile. The stage two assembly may be attachable directly to a load. The stage two assembly is operable independently in a discrete support configuration and is selectively cooperable with the stage one assembly in a full support configuration. The shipping support allows for large machinery such as a turbine or the like to meet at least one shipping criteria that would not otherwise be feasible using a standard shipping support.
Abstract:
A silencer duct that may be part of, for example, a turbomachine inlet may include a duct body. A first perforated wall extends within the duct body and substantially parallel to an interior surface of the duct body. A first acoustic absorbing material may be positioned between the duct body and the first perforated wall. A silencer element may extend axially through the duct body, the silencer element including a second perforated wall having a second acoustic absorbing material adjacent thereto.
Abstract:
An inlet system for a gas turbine includes an inlet duct, a silencer assembly disposed downstream from the inlet duct and an outlet duct disposed downstream from the silencer assembly. The silencer assembly may include a duct and a plurality of laterally spaced baffles disposed within the duct. The baffles may be arranged substantially parallel to a flow of air flowing through the inlet system. Each baffle includes a leading edge portion, a trailing edge portion that is longitudinally spaced from the leading edge portion and a pair of laterally opposing side walls that extend between the leading and trailing edges. Each baffle includes at least one acoustic panel that extends at least partially across one side wall of the pair of side walls.
Abstract:
An assembly for securing machinery such as a gas turbine on a deck includes a first block unit configured to restrict vertical displacement of the machinery relative to the deck, and a second block unit configured to restrict axial and lateral displacement of the machinery. The first block unit includes a base block securable to the deck and an attachment block secured to the base block. The second block unit is engageable with the machinery base.
Abstract:
A support assembly supports a gas turbine in a manufacturing configuration, a shipping configuration and an operating configuration. The support assembly includes a stand leg securable to a base, where the stand leg includes a turbine casing interface with a slot sized to receive a turbine casing pin. A support plate attachable to the turbine casing interface includes a pin aperture that is sized to fit over the turbine casing pin in the slot.