Abstract:
Systems and methods are provided for a visualization of a multi-modal medical image for diagnostic medical imaging. The systems and methods receive first and second image data sets of an anatomical structure of interest, register the first and second image data sets to a geometrical model of the anatomical structure of interest to form a registered image. The geometrical model includes a location of an anatomical marker. The systems and methods further display the registered image.
Abstract:
Systems and methods are provided for a visualization of a multi-modal medical image for diagnostic medical imaging. The systems and methods receive first and second image data sets of an anatomical structure of interest, register the first and second image data sets to a geometrical model of the anatomical structure of interest to form a registered image. The geometrical model includes a location of an anatomical marker. The systems and methods further display the registered image.
Abstract:
Methods and systems are provided for calculating flow transparency values that improve the visualization of turbulent blood flow with an ultrasound imaging system. In one embodiment, a method comprises calculating transparency values for a plurality of voxels based on a variance value and a velocity value of each voxel and a time corresponding to acquisition of each voxel, and rendering an image with the calculated transparency values applied to the plurality of voxels. In this way, the visualization of turbulent blood flow can be tailored to the dynamics of the blood flow, thereby enabling an improved diagnostic accuracy.
Abstract:
A system and method for tracking an invasive device includes a localization system configured to be externally attached to a patient. The localization system includes a transducer module including a plurality of transducer elements. The system and method includes an invasive device including at least one device transducer element. The invasive device is configured to either transmit ultrasound position signals to the transducer module or receive ultrasound position signals from the transducer module.
Abstract:
A method and ultrasound imaging system for detecting a coherent reflector includes acquiring ultrasound channel data from a volume with a probe, calculating a transform function from the ultrasound channel data, identifying a first angle of a projection of the coherent reflector in a plane parallel to the 2D aperture based on the transform function, detecting a line-shaped echo pattern in the ultrasound channel data, and determining a second angle of the coherent reflector with respect to the 2D aperture based on the position of the line-shaped echo pattern. The method and system includes determining a position and orientation of the coherent reflector based on the first angle and the second angle, enhancing a representation of the coherent reflector in an image generated based on the ultrasound channel data, and displaying the image on a display device after enhancing the representation of the coherent reflector.
Abstract:
Example apparatus, systems, and methods for image data processing are disclosed and described. An example system includes an image capturer to facilitate capture of an image. The example system includes a Doppler spectrum recorder to record a Doppler spectrum. The example system includes a study type inferrer to infer a study type associated with the Doppler spectrum by: processing the Doppler spectrum using at least one neural network to generate a first probability distribution among study type classifications; processing the image using the at least one neural network to generate a second probability distribution among the study type classifications; and combining the first probability distribution and the second probability distribution to infer a study type.
Abstract:
Methods and systems are provided for multi-modality imaging. In one embodiment, a method comprises: receiving planning annotations of a pre-operative three-dimensional (3D) image of a subject; during an ultrasound scan of the subject, registering an ultrasound image with the 3D image; overlaying the planning annotations on the ultrasound image; and displaying the ultrasound image with the overlaid planning annotations. In this way, pre-operative planning by a physician can be readily used during intervention.
Abstract:
Methods and systems for segmenting structures in medical images are provided. The methods and systems drive a plurality of transducer element, and collect receive signals from the transducer array at a receive beamformer to form beam summed signals. The methods and systems generate a first ultrasound image of a region of interest (ROI) having tissue elements and blood elements, and generate a second ultrasound image of the ROI having tissue elements and blood elements. The tissue elements of the first ultrasound image having a higher intensity than the blood elements. The blood elements of the second ultrasound image having a higher intensity than the tissue elements. The methods and systems further perform segmentation by simultaneously applying edge detection on the first and second ultrasound images for the ROI.
Abstract:
A method and ultrasound imaging system for detecting a coherent reflector comprises acquiring ultrasound channel data from a volume with a probe including a 2D aperture, calculating a MRT from the ultrasound channel data, identifying a first angle of a projection of the coherent reflector in a plane parallel to the 2D aperture based on the MRT, detecting a line-shaped echo pattern in the ultrasound channel data, determining a second angle of the coherent reflector with respect to the 2D aperture, determining a position and an orientation of the coherent reflector based on the first angle and the second angle, enhancing a representation of the coherent reflector in an image generated based on the ultrasound channel data, and displaying the image on a display device after enhancing the representation of the coherent reflector.