Abstract:
Methods and systems for segmenting structures in medical images are provided. The methods and systems drive a plurality of transducer element, and collect receive signals from the transducer array at a receive beamformer to form beam summed signals. The methods and systems generate a first ultrasound image of a region of interest (ROI) having tissue elements and blood elements, and generate a second ultrasound image of the ROI having tissue elements and blood elements. The tissue elements of the first ultrasound image having a higher intensity than the blood elements. The blood elements of the second ultrasound image having a higher intensity than the tissue elements. The methods and systems further perform segmentation by simultaneously applying edge detection on the first and second ultrasound images for the ROI.
Abstract:
A method and ultrasound imaging system for detecting a coherent reflector comprises acquiring ultrasound channel data from a volume with a probe including a 2D aperture, calculating a MRT from the ultrasound channel data, identifying a first angle of a projection of the coherent reflector in a plane parallel to the 2D aperture based on the MRT, detecting a line-shaped echo pattern in the ultrasound channel data, determining a second angle of the coherent reflector with respect to the 2D aperture, determining a position and an orientation of the coherent reflector based on the first angle and the second angle, enhancing a representation of the coherent reflector in an image generated based on the ultrasound channel data, and displaying the image on a display device after enhancing the representation of the coherent reflector.
Abstract:
The systems and methods described herein generally relate to automatically determining an anatomical measurement of an ultrasound image. The systems and methods identify a view characteristic of an ultrasound image. The ultrasound image including one or more anatomical features. The systems and methods select a diagnostic measurement (DM) tool based on the view characteristic, on a graphical user interface (GUI), which is generated on a display. The systems and methods receive a first selection at a first position within the ultrasound image, and automatically determine an anatomical measurement, to be performed upon the ultrasound image utilizing the DM tool, based on the first position.
Abstract:
A system and method for tracking an invasive device includes a localization system configured to be externally attached to a patient. The localization system includes a transducer module including a plurality of transducer elements. The system and method includes an invasive device including at least one device transducer element. The invasive device is configured to either transmit ultrasound position signals to the transducer module or receive ultrasound position signals from the transducer module.
Abstract:
Methods and systems are provided for multi-modality imaging. In one embodiment, a method comprises: during an ultrasound scan of a patient, co-aligning an ultrasound image received during the ultrasound scan with a three-dimensional (3D) image of the patient acquired with an imaging modality prior to the ultrasound scan; calculating an angle for an x-ray source based on position information in the 3D image to align the x-ray source with the ultrasound image; and adjusting a position of the x-ray source based on the calculated angle. In this way, the same internal views of a patient may be obtained with multiple modalities during an intervention with minimal user input.
Abstract:
Methods and systems are provided for calculating flow transparency values that improve the visualization of turbulent blood flow with an ultrasound imaging system. In one embodiment, a method comprises calculating transparency values for a plurality of voxels based on a variance value and a velocity value of each voxel and a time corresponding to acquisition of each voxel, and rendering an image with the calculated transparency values applied to the plurality of voxels. In this way, the visualization of turbulent blood flow can be tailored to the dynamics of the blood flow, thereby enabling an improved diagnostic accuracy.
Abstract:
An ultrasound imaging system and method includes identifying, with a processor, a subset of the ultrasound channel data with a specular reflector signature, and implementing, with the processor, a specular reflector processing technique on the subset of the ultrasound channel data to calculate at least one of a position and an orientation of a specular reflector. The system and method includes performing an action based on at least one of the position and the orientation of the specular reflector.
Abstract:
The systems and methods described herein generally relate to automatically determining an anatomical measurement of an ultrasound image. The systems and methods identify a view characteristic of an ultrasound image. The ultrasound image including one or more anatomical features. The systems and methods select a diagnostic measurement (DM) tool based on the view characteristic, on a graphical user interface (GUI), which is generated on a display. The systems and methods receive a first selection at a first position within the ultrasound image, and automatically determine an anatomical measurement, to be performed upon the ultrasound image utilizing the DM tool, based on the first position.
Abstract:
Methods and systems are provided for automating analysis of diagnostic medical images. In one example, a method includes obtaining a set of medical images of a patient, automatically generating a set of clinical parameters from the set of medical images, automatically identifying a clinical finding of the patient based on at least one selected clinical parameter of the set of clinical parameters, outputting a graphical user interface for display on a display device, the graphical user interface including a visualization of the clinical finding and a link within the visualization of the clinical finding, and responsive to selection of the link, outputting, for display within the graphical user interface, a visualization of the at least one selected clinical parameter.
Abstract:
An ultrasound imaging system and method includes identifying, with a processor, a subset of the ultrasound channel data with a specular reflector signature, and implementing, with the processor, a specular reflector processing technique on the subset of the ultrasound channel data to calculate at least one of a position and an orientation of a specular reflector. The system and method includes performing an action based on at least one of the position and the orientation of the specular reflector.