Abstract:
The embodiments described herein provide for a system including a processor. The processor is configured to select at least one grid system contingency from a plurality of grid system contingencies. The processor is further configured to derive one or more eigen-sensitivity values based on the at least on grid system contingency. The processor is also configured to derive one or more control actions at least partially based on the eigen-sensitivity values. The processor is additionally configured to apply the one or more control actions for generation re-dispatch of a grid system.
Abstract:
A computer-based method for contingency analysis of oscillatory stability in an electrical power transmission system is provided. The method uses at least one processor. The method includes receiving, by the at least one processor, a plurality of component inputs from a plurality of system components within the electrical power transmission system. The method also includes generating a nominal matrix for the electrical power transmission system. The nominal matrix includes a set of equations at least partially modeling the electrical power transmission system. The method further includes calculating eigenvalues and eigenvectors of the nominal matrix. The method also includes identifying a contingency representing a postulated disturbance of the electrical power transmission system. The method further includes estimating a contingency eigenvalue for the contingency using the eigenvalues and eigenvectors of the nominal matrix.
Abstract:
An electric power system includes a generating unit, which includes a controller for controlling an operational mode of the generating unit. The electric power system also includes an event estimator communicatively coupled to the controller of the generating unit and a network estimator communicatively coupled to the event estimator. The network estimator includes a processor configured to receive status information associated with the electric power system, determine, based upon the status information, at least one characteristic of the electric power system, and transmit the at least one characteristic to the event estimator.
Abstract:
A stability analysis system (SAS) for non-invasive estimation of damping torque associated with a power generator in an electric power network includes a processor in communication with a PMU associated with the generator. The processor is configured to receive a first data sample set from the PMU. The first data set is substantially representative of at least one measurement of the generator. The processor is also configured to determine an estimated torque of the generator based at least in part on the first data set. The processor is further configured to determine an estimated average torque and one or more estimated torque components based at least in part on the estimated torque. The processor is also configured to output the estimated average torque and the one or more estimated torque components to an operator for use in stability analysis of one or more of the generator and the network.
Abstract:
The embodiments described herein provide for a system including a processor. The processor is configured to select at least one grid system contingency from a plurality of grid system contingencies. The processor is further configured to derive one or more eigen-sensitivity values based on the at least on grid system contingency. The processor is also configured to derive one or more control actions at least partially based on the eigen-sensitivity values. The processor is additionally configured to apply the one or more control actions for generation re-dispatch of a grid system.
Abstract:
An electrical power system includes an electrical power distribution network and a control device configured to regulate at least one attribute of said electrical power system. The electrical power system further includes a processor coupled to the control device configured to identify an out-of-bound condition on said electrical power distribution network at a first time. The out-of-bound condition is associated with the at least one attribute. The processor is also configured to determine a trend for the at least one attribute at a second time that is later than the first time after a predetermined delay time elapses. The trend indicates a direction away from at least one of a predetermined range and a predetermined value. The processor is also configured to transmit a control action to said control device based at least in part on the trend.
Abstract:
A method for regulating a power line voltage includes determining a slow voltage variation by filtering an actual voltage at terminals of the voltage regulation apparatus. A fast active power variation is determined by filtering a measured active power of the DG system; wherein a first frequency of the slow voltage variation is smaller than a second frequency of the fast active power variation. The voltage regulation apparatus settings are controlled based on the slow voltage variation and a reactive power output of the DG system is controlled based on fast active power variation.