Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for providing a representation based on structured data in resources. The methods, systems, and apparatus include actions of receiving target acoustic features output from a neural network that has been trained to predict acoustic features given linguistic features. Additional actions include determining a distance between the target acoustic features and acoustic features of a stored acoustic sample. Further actions include selecting the acoustic sample to be used in speech synthesis based at least on the determined distance and synthesizing speech based on the selected acoustic sample.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for receiving data representing acoustic characteristics of a user's voice; selecting a cluster for the data from among a plurality of clusters, where each cluster includes a plurality of vectors, and where each cluster is associated with a speech model trained by a neural network using at least one or more vectors of the plurality of vectors in the respective cluster; and in response to receiving one or more utterances of the user, providing the speech model associated with the cluster for transcribing the one or more utterances.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating phoneme representations of acoustic sequences using projection sequences. One of the methods includes receiving an acoustic sequence, the acoustic sequence representing an utterance, and the acoustic sequence comprising a respective acoustic feature representation at each of a plurality of time steps; for each of the plurality of time steps, processing the acoustic feature representation through each of one or more long short-term memory (LSTM) layers; and for each of the plurality of time steps, processing the recurrent projected output generated by the highest LSTM layer for the time step using an output layer to generate a set of scores for the time step.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media for learning pronunciations from acoustic sequences. One method includes receiving an acoustic sequence, the acoustic sequence representing an utterance, and the acoustic sequence comprising a sequence of multiple frames of acoustic data at each of a plurality of time steps; stacking one or more frames of acoustic data to generate a sequence of modified frames of acoustic data; processing the sequence of modified frames of acoustic data through an acoustic modeling neural network comprising one or more recurrent neural network (RNN) layers and a final CTC output layer to generate a neural network output, wherein processing the sequence of modified frames of acoustic data comprises: subsampling the modified frames of acoustic data; and processing each subsampled modified frame of acoustic data through the acoustic modeling neural network.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media for learning pronunciations from acoustic sequences. One method includes receiving an acoustic sequence, the acoustic sequence representing an utterance, and the acoustic sequence comprising a sequence of multiple frames of acoustic data at each of a plurality of time steps; stacking one or more frames of acoustic data to generate a sequence of modified frames of acoustic data; processing the sequence of modified frames of acoustic data through an acoustic modeling neural network comprising one or more recurrent neural network (RNN) layers and a final CTC output layer to generate a neural network output, wherein processing the sequence of modified frames of acoustic data comprises: sub sampling the modified frames of acoustic data; and processing each subsampled modified frame of acoustic data through the acoustic modeling neural network.
Abstract:
Methods, including computer programs encoded on a computer storage medium, for enhancing the processing of audio waveforms for speech recognition using various neural network processing techniques. In one aspect, a method includes: receiving multiple channels of audio data corresponding to an utterance; convolving each of multiple filters, in a time domain, with each of the multiple channels of audio waveform data to generate convolution outputs, wherein the multiple filters have parameters that have been learned during a training process that jointly trains the multiple filters and trains a deep neural network as an acoustic model; combining, for each of the multiple filters, the convolution outputs for the filter for the multiple channels of audio waveform data; inputting the combined convolution outputs to the deep neural network trained jointly with the multiple filters; and providing a transcription for the utterance that is determined.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for multilingual prosody generation. In some implementations, data indicating a set of linguistic features corresponding to a text is obtained. Data indicating the linguistic features and data indicating the language of the text are provided as input to a neural network that has been trained to provide output indicating prosody information for multiple languages. The neural network can be a neural network having been trained using speech in multiple languages. Output indicating prosody information for the linguistic features is received from the neural network. Audio data representing the text is generated using the output of the neural network.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for caching speech recognition scores. In some implementations, one or more values comprising data about an utterance are received. An index value is determined for the one or more values. An acoustic model score for the one or more received values is selected, from a cache of acoustic model scores that were computed before receiving the one or more values, based on the index value. A transcription for the utterance is determined using the selected acoustic model score.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for multilingual prosody generation. In some implementations, data indicating a set of linguistic features corresponding to a text is obtained. Data indicating the linguistic features and data indicating the language of the text are provided as input to a neural network that has been trained to provide output indicating prosody information for multiple languages. The neural network can be a neural network having been trained using speech in multiple languages. Output indicating prosody information for the linguistic features is received from the neural network. Audio data representing the text is generated using the output of the neural network.
Abstract:
A computer-implemented method of multisensory speech detection is disclosed. The method comprises determining an orientation of a mobile device and determining an operating mode of the mobile device based on the orientation of the mobile device. The method further includes identifying speech detection parameters that specify when speech detection begins or ends based on the determined operating mode and detecting speech from a user of the mobile device based on the speech detection parameters.