Abstract:
An optical apparatus for a head wearable display includes a lightguide, in-coupling holograms, and an out-coupling optical element. The lightguide includes an in-coupling region for receiving display light into the lightguide, an out-coupling region for emitting the display light out of the lightguide, and a relay region for guiding a path of the display light from the in-coupling region to the out-coupling region. A first of the in-coupling holograms is disposed at the in-coupling region to redirect the path of the display light by a first angle. A second of the in-coupling holograms is disposed across from the first in-coupling hologram at the in-coupling region to redirect the path of the display light by a second angle such that the path of the display light enters a total internal reflection condition in the relay region after redirection by the first and second in-coupling holograms.
Abstract:
A lightguide assembly including structures to provide for outcoupling of light from an internal reflection structure. In an embodiment, a lightguide assembly includes light transmissive bodies forming respective corrugations which are coupled to one another. Optical coatings are variously disposed between the respective corrugations, wherein the optical coatings provide for redirection of light from the lightguide assembly. In another embodiment, optical coatings are each applied to a respective one of alternate facets of a corrugation. Polymer film portions provide mechanical support for the optical coatings during application to the corrugation.
Abstract:
An optical apparatus for a head wearable display includes a lightguide, in-coupling holograms, and an out-coupling optical element. The lightguide includes an in-coupling region for receiving display light into the lightguide, an out-coupling region for emitting the display light out of the lightguide, and a relay region for guiding a path of the display light from the in-coupling region to the out-coupling region. A first of the in-coupling holograms is disposed at the in-coupling region to redirect the path of the display light by a first angle. A second of the in-coupling holograms is disposed across from the first in-coupling hologram at the in-coupling region to redirect the path of the display light by a second angle such that the path of the display light enters a total internal reflection condition in the relay region after redirection by the first and second in-coupling holograms.
Abstract:
An optical element for a Head Mounted Display (“HMD”) includes a lightguide. The lightguide is embedded in the optical element and optically coupled to receive display light and direct the display light in an eyeward direction. The lightguide includes an eyeward hologram, a scene-side hologram, and a propagation region disposed between the eyeward hologram and the scene-side hologram. The eyeward hologram is configured to reflect a wavelength range of the display light that is incident upon the eyeward hologram at a specific angle. The scene-side hologram is configured to reflect the wavelength range of the display light that is incident upon the scene-side hologram at the specific angle.
Abstract:
A lightguide assembly including structures to provide for outcoupling of light from an internal reflection structure. In an embodiment, a lightguide assembly includes light transmissive bodies forming respective corrugations which are coupled to one another. Optical coatings are variously disposed between the respective corrugations, wherein the optical coatings provide for redirection of light from the lightguide assembly. In another embodiment, optical coatings are each applied to a respective one of alternate facets of a corrugation. Polymer film portions provide mechanical support for the optical coatings during application to the corrugation.