Abstract:
A method may include identifying a repeating frame structure for communication between a MIMO base station and one or more wireless devices, the frame structure including a plurality of slots, with each slot including an uplink portion and a downlink portion, and each uplink portion and downlink portion comprising a plurality of sub-slots, receiving, at the wireless base station, an identification of a first wireless device of the one or more wireless devices, assigning to the first wireless device, a sub-slot in an uplink portion of a static slot in the frame structure, communicating, to the first wireless device, information from which the first wireless device can identify the sub-slot, and communicating with the one or more wireless devices by associating data in the first sub-slot with the first wireless device.
Abstract:
In general, the subject matter described in this specification can be embodied in methods, systems, and program products for adapting data rate in a communication system. A receiving device receives a data transmission at an initial data rate. The device determines, based on an error rate of the data transmission at the initial data rate, that a first criterion is satisfied for requesting an increase in the data transmission. The device requests that a transmitting device increase the data transmission from the initial data rate to the first subsequent data rate. The device determines, based on an error rate of the data transmission at the first subsequent data rate, whether a second criterion is satisfied for maintaining the first subsequent data rate. The device maintains, if the second criterion is determined to be satisfied, a state of the device for receiving the data transmission at the first subsequent data rate.
Abstract:
In general, the subject matter described in this specification can be embodied in methods, systems, and program products for adaptive data unit transmission. A sliding window is filled with data units and designates a sliding window start position and a sliding window end position. A value for each of the data units in the sliding window is stored, the value representing a maximum number of times that each data unit is to be transmitted. The stored value is different among at least two of the data units. Data units are selected from the sliding window to be assembled into a packet. An assembled packet is transmitted to a receiving computerized device. A determination that the data unit positioned at the sliding window start position has been transmitted a maximum number of time is performed, and in response a different data unit is positioned at the sliding window start position.
Abstract:
Computer-implemented techniques are presented for a client device to wake up, independent of receiving a beacon signal, and transmit a first pilot signal to establish a link with a base station. Subsequent to waking up, the client device can perform an association process to establish the link with the base station to become “partially associated” with the base station and update the client device information at the base station. The client device information can be stored in a table at the base station, and the table can be a global table that is shared between all base stations in the wireless MIMO network. After establishing a link, the base station can inform the client device whether there is a pending call or data packet for the client device. If there is a pending call or data packet, the client device can become “fully associated” with the base station.
Abstract:
A technique includes (i) receiving a first pilot signal from a base station via a receiver of a client device, or (ii) transmitting a second pilot signal from the client device to the base station via a transmitter of the client device. First time differences and signal quality values for N samples of N respective packets in the first pilot signal are determined. Second time differences and signal quality values are received via the receiver. The second time differences and signal quality values are generated for M samples of M respective packets in the second pilot signal. An offset value is determined based on (i) the first time differences and signal quality values, or (ii) the second time differences and signal quality values. Activation or deactivation times of the receiver or the transmitter or transmission times of the transmitter are adjusted based on the offset value.
Abstract:
Content such as a television program can be shared by pushing a content identifier to a queue through a social network. A share request from a sender can designate a recipient for the content. An implementation can determine if the sender and the recipient have permission to share the content. If permitted, an identifier associated with the content can be pushed to a viewing queue of the recipient. A user can subscribe to follow a viewing queue, which can provide to the user access to the queue's listing of content, as well as the content itself.